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Abstract  

This paper examines the difficulties and solutions associated with data consistency and reliability in distributed storage 

systems. Distributed storage systems are necessary for managing data in distributed computing environments but 

ensuring data consistency and reliability can be challenging. The paper examined various consistency models, such 

as eventual consistency, strong consistency, and conflict-free replicated data types (CRDTs), as well as techniques for 

maintaining data reliability, such as replication, erasure coding, and versioning, in a comprehensive literature review. 

The trend analysis reveals significant advancements in the field, with distributed storage systems continuously 

improving their ability to balance consistency, latency, and availability tradeoffs. The discussion section of the paper 

examined the implications of these findings for the design and implementation of distributed storage systems and 

identifies areas for future research. Examining the impact of emerging technologies such as non-volatile memory on 

the design of distributed storage systems. The findings provide researchers, practitioners, and system designers 

working with distributed storage systems and related technologies with valuable insights to advance knowledge in this 

vital field and develop innovative solutions to meet the rising demands of distributed computing environments. 
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Introduction 

In the realm of modern applications generating an exponential growth of digital data, the reliance on distributed storage 

systems has surged. These systems, offering enhanced scalability, fault tolerance, and availability compared to 

traditional centralized storage systems (Ghemawat et al., 2003), face persistent challenges in ensuring data consistency 

and reliability across distributed environments, especially in the presence of network failures, node failures, or data 

corruption (Vogels, 2009). The critical aspect of data consistency is pivotal for maintaining a coherent view of stored 

data among all nodes within the system, even when faced with concurrent updates or node failures (Terry et al., 1994). 

Key mechanisms for achieving data consistency and reliability involve the strategic use of replication and data 

redundancy, enabling data distribution across multiple nodes to ensure fault tolerance and recovery. Extensive research 

in recent years has centred on the challenge of maintaining data consistency and reliability in distributed storage 

systems. Various algorithms and techniques are proposed to address these challenges, as evidenced by the works of 

Lakshman and Malik (2010) and Decandia et al. (2007). However, a deeper understanding of the intricate interplay 

between consistency, reliability, and other system aspects such as performance, scalability, and availability is 

imperative.  

 

The study aims to address significant research gaps in the existing literature and contribute to a deeper understanding 

of critical aspects in this domain. Existing literature has touched on mechanisms employed to maintain data 

consistency and reliability in distributed storage systems, but there is a need for a more in-depth exploration, as 

highlighted by Ghemawat et al. (2003) and Vogels (2009). Vogels (2009) introduced the concept of ‘eventual 

consistency which further emphasizes the fact that eventual consistency is not some esoteric property of extremely 

distributed systems. Eventual consistency is an extensively utilized model, ensuring that in the absence of new updates 

to the shared state, all nodes will ultimately converge to the same data (Bailis & Ghodsi, 2013; Burckhardt, 2014; 

Terry et al., 1994; Vogels, 2009). Numerous contemporary relational database management systems (RDBMSs) that 

ensure primary backup reliability incorporate replication techniques in both synchronous and asynchronous modes. In 

synchronous mode, the replica update is an integral part of the transaction, while in asynchronous mode, updates reach 

the backup with a delay, often facilitated through log shipping. In the latter scenario, if the primary fails before the 

logs are shipped, reading from the promoted backup may yield outdated and inconsistent values. Additionally, to 
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enhance scalable read performance, RDBMSs have begun offering the option to read from the backup. This represents 

a classic implementation of providing eventual consistency guarantees, wherein the inconsistency windows are 

contingent on the periodicity of the log shipping. The dynamic nature of technology necessitates continuous 

monitoring of advancements. Staying updated with the latest developments, building upon insights from Ghemawat 

et al. (2003) and Vogels (2009). While prior research frequently concentrated on isolated components, this study 

endeavours to offer a comprehensive perspective, synthesizing insights from the works of Terry et al. (1994) and 

drawing on the findings of Vogels (2009). 

 

The issue of data consistency in distributed storage systems has been extensively studied, and several approaches to 

maintaining a consistent view of stored data across multiple nodes have been proposed. Consensus algorithms, such 

as Paxos (Lamport, 1998) and Raft (Ongaro & Ousterhout, 2014), ensure that system nodes agree on the values of the 

stored data despite network and node failures. These algorithms are commonly used in distributed databases and other 

storage systems and are designed to provide strong consistency guarantees. Using conflict resolution techniques, as 

seen in Amazon's Dynamo (Decandia et al., 2007) and Apache Cassandra, is an additional method for ensuring data 

consistency (Lakshman & Malik, 2010). These systems employ an "eventually consistent" model in which updates 

are propagated asynchronously and conflicts are resolved using techniques like vector clocks, version vectors, and 

timestamps. In exchange for improved performance and availability, this strategy sacrifices some consistency 

guarantees, making it suitable for large-scale, geographically distributed storage systems. In addition, numerous 

techniques for detecting and recovering from data corruption in distributed storage systems have been studied by 

researchers. Reed-Solomon erasure coding (Reed & Solomon, 1960) and Tornado codes (Byers et al., 1998) are 

examples of error-correcting codes used to recover corrupted data in the presence of node failures or data corruption. 

In addition, systems like Google's File System (GFS) (Ghemawat et al., 2003) and Hadoop Distributed File System 

(HDFS) (Shvachko et al.,  2010) use checksumming and data replication to detect and recover from data corruption. 

 

In distributed storage systems, replication and data redundancy are fundamental mechanisms for achieving data 

consistency and reliability. Distributed storage systems can tolerate node failures and guarantee data accessibility even 

in the presence of network partitions by replicating data across multiple nodes. Various strategies, such as primary-

backup replication (Alsberg & Day, 1976), chain replication (van Renesse & Schneider, 2004), and quorum-based 

replication, can be used to implement data replication (Gifford, 1979). These replication strategies have varying trade-

offs regarding consistency, availability, and performance, making them suitable for a variety of application 

requirements and system constraints. On the other hand, data redundancy can be achieved via techniques such as 

erasure coding and data stripping (Plank, 1997). Erasure coding divides data into smaller chunks and encodes them 

with redundant chunks, enabling the recovery of the original data even if some chunks are lost or corrupted. This 

method has been implemented in several distributed storage systems, including Facebook's f4 system and Microsoft's 

Azure Storage (Calder et al., 2011). 

 

Challenges of Data Consistency and Reliability in Distributed Storage Systems 

The widespread adoption of distributed storage systems has been spurred by the proliferation of data-intensive 

applications such as cloud computing, social media, and the Internet of Things (IoT) (DSS). These systems store and 

manage data across multiple nodes or servers, providing greater scalability, availability, and fault tolerance than 

centralized systems (Bhattacharjee et al., 2017). Due to factors such as network latency, node failures, and concurrent 

data access, maintaining data consistency and reliability in distributed storage systems has proven to be a formidable 

challenge. Concerning data consistency and dependability in distributed storage systems, researchers have identified 

a variety of obstacles and proposed many solutions. Dealing with the trade-offs between consistency, availability, and 

partition tolerance, as described by the CAP theorem, is one of the primary challenges of maintaining data consistency 

in distributed storage systems (Brewer, 2000). This theorem asserts that a distributed system can only simultaneously 

guarantee two of the three properties. Therefore, designers must carefully select which consistency models to 

implement based on the specific requirements of their applications (Terry, 2013). Some applications may prioritize 

strong consistency to ensure that all nodes have the most recent data, whereas others may prioritize eventual 

consistency to maintain high availability and fault tolerance at the expense of temporary data inconsistencies (Vogels, 

2009). Distributed storage systems must be able to recover from node failures and data corruption while mitigating 

the effect on overall system performance. Data replication, erasure coding, and versioning are some of the techniques 

proposed to improve data reliability in distributed storage systems (Ghemawat et al., 2003). Data replication entails 

storing multiple copies of the same data across multiple nodes, thereby enhancing fault tolerance and availability but 

also necessitating additional storage resources and posing potential consistency issues (Hendricks et al., 2007). Erasure 
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coding, on the other hand, involves dividing data into fragments and adding redundant pieces to allow for the 

reconstruction of the original data in the event of node failures. Erasure coding provides better storage efficiency than 

replication, but a higher computational overhead (Xin et al., 2013). Finally, versioning techniques enable the detection 

and recovery of corrupted data in a distributed storage system by tracking changes to data over time (Lakshman & 

Malik, 2010). 

 

Different Approaches to Addressing Data Consistency and Reliability in Distributed Storage Systems 

In recent years, distributed storage systems have attracted considerable interest due to their capacity to provide 

scalable, reliable, and highly available storage. Nonetheless, ensuring data consistency and dependability in such 

systems remains difficult. This review of the relevant literature discusses various approaches to addressing these 

challenges. 

 

Replication and Quorum-based Approaches: One common approach to ensuring data consistency and reliability in 

distributed storage systems is through replication (Lakshman & Malik, 2010). Replication involves creating and 

maintaining multiple copies of data across different nodes in the system. This redundancy allows the system to tolerate 

failures and maintain availability. Quorum-based approaches, such as the Paxos algorithm (Lamport, 1998), extend 

this idea by requiring most nodes (a quorum) to agree on a value before it is considered committed. This method helps 

ensure consistency by requiring that any two quorums have at least one node in common, reducing the likelihood of 

conflicting updates. 

 

Consistency Models and Protocols: Different consistency models have been proposed to guarantee the order and 

visibility of updates in distributed storage systems in different ways. Strong consistency models, such as linearizability 

(Herlihy & Wing, 1990) and serializability (Bernstein et al., 1987), offer strict guarantees but frequently incur 

substantial latency and overhead. Weaker consistency models, such as eventual consistency (Vogels, 2009) and causal 

consistency (Lloyd et al., 2011), sacrifice some consistency guarantees in exchange for enhanced performance and 

availability. Consistency protocols are frequently used by distributed storage systems to enforce consistency models. 

Two-phase commit (Gray, 1978) and three-phase commit (Skeen, 1981) are examples of protocols used in distributed 

transactions to ensure atomicity and isolation. Protocols developed more recently, such as chain replication (Van 

Renesse & Schneider, 2004) and conflict-free replicated data types (CRDTs) (Shapiro et al., 2011), prioritize 

consistency while minimizing coordination overhead. 

 

Erasure Coding and Fault Tolerance: Erasure coding (Huang et al., 2012) is an additional technique for ensuring the 

integrity of data in distributed storage systems. Erasure coding divides data into fragments and encodes them using a 

redundant encoding scheme rather than duplicating entire data items. This enables the system to tolerate a certain 

number of failures with less storage overhead than replication. Fault-tolerant distributed storage systems frequently 

employ various fault tolerance techniques, such as Byzantine fault tolerance (Castro & Liskov, 2002), to guarantee 

data consistency and dependability in the presence of failures or malicious nodes. To achieve their objectives, these 

techniques frequently employ consensus algorithms, cryptographic methods, and redundancy. 

 

Trend Analysis of Distributed Storage Systems 

A trend analysis of distributed storage systems and how they handle data consistency and reliability reveals several 

significant directions and advancements in the field. These trends reflect the increasing significance of scalable and 

fault-tolerant storage systems in a world that is increasingly data-driven, as well as the need to accommodate diverse 

application requirements and resource constraints. The paper discusses the following trends. 

 

Stronger consistency models: As distributed storage systems continue to evolve, there is an increasing emphasis on 

delivering more consistent models without sacrificing performance or availability. For example, research on consensus 

algorithms such as Paxos (Lamport, 1998) and Raft (Ongaro & Ousterhout, 2014) has led to more efficient and 

comprehensible implementations that can be applied to a broader range of applications, such as distributed databases, 

blockchains, and coordination services. 

 

Geo-replication and edge computing: With the proliferation of edge computing and Internet of Things (IoT) devices, 

there is a growing demand for distributed storage systems that can handle data consistency and reliability across 

geographically dispersed nodes. Geo-replication techniques such as Multi-Paxos (Lamport, 2005), Chain Reaction, 



 

Distributed storage systems and how they handle data consistency and reliability 
 

87 Cite this article as:   

Aikins, M.V. (2023). Distributed storage systems and how they handle data consistency and reliability. FNAS Journal of 

Scientific Innovations, 5(1), 84-90.  

 

and CRDTs (Shapiro et al., 2011) can provide high levels of consistency, fault tolerance, and data locality for 

applications that span multiple data centres or edge locations. 

 

Adaptive consistency models: The development of adaptive consistency models that can dynamically adjust the level 

of consistency provided based on application requirements and system conditions is an additional emerging trend in 

distributed storage systems. Techniques such as consistency rationing (Kraska et al.,  2009), RedBlue consistency (Li 

et al., 2012), and hybrid consistency models (Terry et al., 1994) permit the fine-tuning of consistency, availability, 

and performance trade-offs, thereby enabling systems to better adapt to changing workloads, network conditions, and 

resource constraints. 

 

Self-healing and autonomous systems: As the size and complexity of distributed storage systems continue to increase, 

there is a growing demand for self-healing and autonomous mechanisms that can automatically detect and recover 

from failures, data corruption, and other problems. Recent research has focused on machine learning and artificial 

intelligence techniques for automating the management of distributed storage systems, including failure prediction (Li 

et al., 2006), anomaly detection (Mace et al., 2018), and automated tuning (Mace et al., 2018). (Arulraj & Pavlo, 

2017). 

 

Integration with modern data processing frameworks: The increasing popularity of big data processing frameworks 

such as Apache Spark (Zaharia et al., 2016) and Apache Flink (Carbone et al., 2015) has increased interest in 

developing distributed storage systems that can integrate seamlessly with these platforms and provide consistent and 

dependable storage for large-scale data processing jobs. Alluxio and Delta Lake are two examples of distributed 

storage systems designed specifically for big data workloads (Armbrust et al., 2020). These trends underscore the need 

for further research and development in this area, as well as the integration of new technologies and approaches to 

address the ever-growing challenges of managing data in large-scale, distributed systems 

 

This paper addresses two critical research questions: 

1. How do distributed storage systems uphold data consistency across multiple nodes in the face of network 

failures, node failures, or data corruption? 

2. What roles do replication and data redundancy play in achieving data consistency and reliability in distributed 

storage systems? 

The significance of this study lies in its exploration of the mechanisms employed by distributed storage systems to 

maintain data consistency and reliability amidst challenges such as network and node failures. Additionally, it delves 

into the pivotal roles of replication and data redundancy in attaining these objectives. This exploration holds the 

potential to contribute substantially to the ongoing development of more robust, efficient, and reliable distributed 

storage systems—crucial components supporting modern data-intensive applications and services. By investigating 

the challenges and best practices associated with ensuring data consistency and reliability, this research aims to provide 

valuable insights and recommendations for both academia and industry. Improved understanding of the mechanisms 

and techniques used in maintaining data consistency and reliability not only enhances the design and implementation 

of current storage systems but also lays the groundwork for future advancements in this critical field. 

 

Methodology  

This research paper's methodology is comprised of a systematic literature review, a comparative analysis of existing 

techniques and approaches, and an evaluation of their effectiveness in addressing the challenges of data consistency 

and reliability. The researcher employs PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines to ensure a rigorous and transparent review process, a comprehensive literature search was 

conducted in major databases to identify relevant articles, conference papers, and technical reports published over the 

years. The identified literature was analyzed to extract information about the various consistency models and 

techniques used in distributed storage systems to ensure data reliability and consistency. The strengths and weaknesses 

of these approaches, as well as the trade-offs and complexities involved in implementing them in distributed storage 

systems, were examined through a comparative analysis. Based on the comparative analysis, the efficacy of the various 

consistency models and data reliability techniques in addressing the challenges of data consistency and reliability in 

distributed storage systems was assessed. The evaluation considered scalability and performance in real-world 

scenarios, as well as the ability to handle varying levels of consistency, latency, and availability requirements. The 

results of the systematic literature review, comparative analysis, and evaluation of effectiveness were synthesized to 
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answer the research questions and the implications of the findings for the design and implementation of distributed 

storage systems.  

 

Discussion 

The first research question concerned the mechanisms and strategies utilized by distributed storage systems to maintain 

data consistency across multiple replicas. Distributed storage systems use a variety of consistency maintenance 

strategies, including eventual consistency, strong consistency, and conflict-free replicated data types (CRDT) (Shapiro 

et al., 2011; Terry et al., 1994; Yu & Vahdat, 2000). The disadvantages of each of these strategies include latency, 

availability, and system complexity. The selection of a specific consistency model is determined by the requirements 

of the application and the underlying system architecture. Eventual consistency is commonly used in distributed 

storage systems due to its low latency and high availability, but it can lead to temporary inconsistencies between 

replicas (Terry et al., 1994). Strong consistency models, such as Paxos and Raft, ensure that all replicas always have 

the same state, but at the cost of increased latency and decreased availability (Lamport, 1998; Lamport, 2005). CRDTs 

offer a middle ground by offering a collection of data structures that can be updated concurrently without conflicts 

and eventually converge to a consistent state (Shapiro et al., 2011). 

 

The second research question centred on how distributed storage systems guarantee data integrity in the face of data 

loss and failure. The literature demonstrates that distributed storage systems employ techniques such as replication, 

erasure coding, and versioning to guarantee data integrity (Li et al., 2006; Lamport, 2005). Replication is a common 

method for ensuring data durability, with systems creating multiple copies of data across multiple nodes (Armbrust et 

al., 2020; Li et al., 2014). Erasure coding is another data-reliability-providing technique that divides data into 

fragments and encodes them so that the original data can be reconstructed even if some fragments are lost (Mace et 

al., 2018). Versioning helps maintain data integrity by tracking changes to data objects over time, facilitating data 

recovery in the event of data loss or corruption (Zaharia et al., 2016). The literature review reveals that distributed 

storage systems have made substantial strides in addressing data consistency and reliability issues. Nevertheless, 

further research is necessary in several areas. Future research could, for instance, investigate novel strategies for 

balancing the tradeoffs between consistency, latency, and availability. In addition, research could be conducted to 

develop new data structures or algorithms that improve the efficiency of replication and erasure coding, especially in 

large-scale distributed systems. Finally, it would be beneficial to examine how emerging technologies, such as non-

volatile memory, may affect the design of distributed storage systems and their capacity to guarantee data consistency 

and reliability (Arulraj et al., 2017; Li et al., 2012). 

 

Conclusion 

This paper has examined the challenges and strategies associated with data consistency and dependability in 

distributed storage systems. The paper also identified, through a comprehensive literature review, the key mechanisms 

and approaches used by these systems to maintain data consistency and ensure data reliability. The study further 

highlighted the tradeoffs and complexities involved in designing and implementing distributed storage systems that 

can manage data in a distributed environment efficiently. In review of the relevant literature, the paper examined 

various consistency models, such as eventual consistency, strong consistency, and conflict-free replicated data types 

(CRDTs), as well as techniques for ensuring data integrity, such as replication, erasure coding, and versioning. The 

trend analysis demonstrates that significant progress has been made in addressing these challenges, with distributed 

storage systems continuously evolving to achieve a better balance between consistency, latency, and availability. In 

the discussion section, the implications of these findings for the design and implementation of distributed storage 

systems were examined in depth. The paper further identified areas for future research, such as the exploration of 

novel approaches for balancing the tradeoffs between consistency, latency, and availability, the development of new 

data structures or algorithms to improve the efficiency of replication and erasure coding, and the investigation of how 

emerging technologies, such as non-volatile memory, may impact the design of distributed storage systems. The 

results offer useful insights for researchers, practitioners, and system designers dealing with distributed storage 

systems and related technologies. By further investigating the areas as identified for future study, it will enhance 

understanding of this important field and create new solutions to address the growing needs of distributed computing 

environments. 
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