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Abstract  

In this paper, sensitivity analysis of the transmission dynamics of the diphtheria model is considered, using an SIR 

model. The sensitivity indices of the model parameters were calculated. The study was undertaken to ascertain the 

parameters that should be considered as targets for intervention strategies. The result shows that an increase in the 

population of susceptible individuals knowing their infectious status (𝜌), the natural death rate (𝜇), the proportion of 

aware susceptible persons who have been vaccinated (∅), the rate of treatment of diphtheria infectives (𝛿) and, the 

disease-induced death rate of infectives (𝛼) will decrease the reproduction number (the response function) thereby 

curtailing the spread of the disease. while a decrease in these parameters will increase the reproduction number 

which will result in an escalation of the disease. Similarly, if the recruitment rate (𝑝), the incidence rate of unaware 

susceptible individuals (𝛽1), the incidence rate of aware susceptible individuals (𝛽2), the modification parameter (𝜏) 

and the disease-induced death rate of treated diphtheria infectives (𝑣) are increased in value, then the reproduction 

number will increase and this will lead to an endemic situation. It is recommended that relevant government 

agencies should closely monitor the sensitivity indices. 
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Introduction 

The Centers for Disease Control and Prevention (CDC) (2022) defined diphtheria as "a contagious disease which is 

caused by strains of bacteria called Corynebacterium diphtheriae that make toxin". It is a bacterial infection that 

affects the mucous membranes of the nose and throat. It is a vaccine-preventable disease that is transmitted through 

droplets from coughs and sneezes or by intimate contact with a person who has contracted the disease. The disease 

may impede breathing, and cause heart rhythm problems or death. 

 

In December 2022, the Nigeria Centre for Disease Control (NCDC) disclosed a manifold sudden increase in 

diphtheria infection affecting different states throughout the country. In June 2023, the NCDC announced the death 

of a four-year-old resulting from diphtheria infection in the Federal Capital Territory (FCT), Abuja. By 30th June 

2023, there were seven hundred and ninety-eight (798) confirmed diphtheria cases from thirty-three (33) local 

government areas (LGAs) in 8 states, with the FCT inclusive. Seven hundred and eighty-two (782) of the 798 cases 

occurred in Kano State. Other states with confirmed cases include Lagos, Yobe, Kastina, Cross River, Kaduna and 

Osun. About 71.7% (0.717) of the 798 infected individuals were children aged 2-14 years. As of 6th July 2023, a 

case fatality rate (CFR) of 10% (0.10), giving a total of eighty deaths, was reported among all confirmed cases 

(NCDC, 2023). 

 

The outbreak of the disease continued to pose a serious threat to communities at risk in Nigeria. In July 2023, the 

number rose from 798 to 1387 confirmed cases, claiming a total of 122 lives, affecting mainly Kano, Yobe, Katsina, 

Lagos, FCT, Sokoto and Zamfara, accounting for 98%  of the suspected cases (UNICEF, 2023 and WHO, 2023). On 

the 3rd of August 2023, the United Nations International Children's Emergency Fund (UNICEF) reported diphtheria 

infection of children in 27 states, hence the need to amplify efforts to counter the growing outbreak of the 

disease.Despite the availability of safe and cost-effective vaccines in the country, it was reported that 654 (that is, 

82%) of the 798 initial confirmed diphtheria cases were unvaccinated, including the FCT case. To prevent diphtheria 
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infection, CDC (2022) recommends vaccines for infants, children, teens and adults. It was emphasised that early 

diagnosis and effective treatment are predictors of a favourable outcome.  

 

A crucial objective of mathematical modelling is to find out the most recent result of a system and to find ways to 

replace any unfavourable result. Varying the values of the most sensitive parameter is the most effective strategy to 

change the model result (Mikueki, 2012). Sensitivity analysis is crucial for mathematical models as it determines 

which parameters and initial conditions affect the quantities of the model the most. It investigates changes in a 

model due to changes in the inputs (initial condition) and reveals which parameters should be given the most 

attention (Mikueki, 2012). A small variation in a very sensitive parameter will result in a large quantitative change 

to some quantity of interest which may give rise to qualitatively different results. Hence, in estimating parameters, a 

sensitive parameter should be carefully estimated. A little change in an insensitive parameter is not likely to give 

significant changes to any value of interest; hence an insensitive parameter does not require much attention in its 

estimation.According to Edward et al. (2004), sensitivity analysis determines how sensitive a system is to changes in 

the structure and parameter values of the model. Since uncertainties are usually associated with parameters, 

sensitivity analysis helps to build confidence in the model by studying the uncertainties. It is also used to determine 

how robust a model prediction is to parameter values (Edward, 2004).   

 

Materials and Methods 

The total population under consideration at time 𝑡, represented by 𝑁(𝑡), is split into the following classes of persons 

susceptible to diphtheria 𝑆(𝑡), susceptible individuals who are unaware of diphtheria 𝑆1(𝑡), susceptible persons who 

know about diphtheria 𝑆2(𝑡), individuals infected with diphtheria 𝐼(𝑡) and recovered persons 𝑅(𝑡). Hence,  

 

 𝑁(𝑡) = 𝑆(𝑡) + 𝑆1(𝑡) + 𝑆2(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).    (1) 

In this work, the model proposed by Udoo (2018) is adopted and is stated as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝑝 − (𝜆 + 𝜌 + 𝜇)𝑆,   𝑆(0) > 0   (2) 

 
𝑑𝑆1

𝑑𝑡
= (1 − 𝜙)𝜌𝑆 − (𝜏𝜆1 + 𝜇)𝑆1,  𝑆1(0) > 0   (3) 

 
𝑑𝑆2

𝑑𝑡
= 𝜙𝜌𝑆 − 𝜇𝑆2,    𝑆2(0) > 0   (4) 

 
𝑑𝐼

𝑑𝑡
= 𝜆𝑆 + 𝜏𝜆1𝑆1 − (𝛿 + 𝛼 + 𝜇)𝐼,  𝐼(0) ≥ 0   (5) 

 
𝑑𝑅

𝑑𝑡
= 𝛿𝐼 − (𝑣 + 𝜇)𝑅,    𝑅(0) ≥ 0   (6) 

 

The variables and parameter values in the model are presented in Tables 1-2 below. 
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Table 1: Parameters in the system (2) – (6) 

Parameter Description Approximate value 

𝑝 Recruitment rate 0.029 

 
𝛽1 Incidence rate of unaware susceptible 

individuals 

0 ≤ 𝛽1 ≤ 1 

 

 
𝛽2 Incidence rate of aware susceptible 

individuals 

 

0 ≤ 𝛽2 ≤ 1 

𝜏 Modification parameter 

 

0 < 𝜏 < 1 

𝜌 Rate of susceptible knowing their 

infectious status 

 

0 < 𝜌 < 1 

𝜇 Natural death rate 

 

0.02 

∅ The proportion of aware susceptible 

individuals who are vaccinated 

 

0 < ∅ < 1 

𝛿 Treatment rate of diphtheria infectives 

 

0 < 𝛿 < 1 

𝛼 Disease-induced death rate of infectives 

 

0.10 

𝑣 Disease-induced death rate of treated 

diphtheria infectives 

0.02 

 

Table 2: Description of model variables 

Parameter Description 

𝑆 Population of individuals susceptible to diphtheria 

 𝑆1 The population of  susceptible persons not knowing diphtheria 

 

𝑆2 Population of  susceptible persons knowing diphtheria 

 

𝐼 The population of Infectious Individuals 

 
𝑅 Population of recovered individuals 

  

It follows from (1) that the rate at which the total population is changing is given by 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑝 − 𝜇𝑁 − 𝛼𝐼 − 𝑣𝑅       (7) 

The forces of infection for 𝑆 and 𝑆1 are given as 

 𝜆 = 𝛽1𝐼 and 𝜆1 = 𝛽2𝐼 
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Basic Properties of the Model 

Since equations (2) – (6) monitor the human population, it is assumed that all the state variables and parameters are 

non-negative for all time (𝑡). In other words, the solution of the model equations (2) – (6) with positive initial data 

will remain positive for all 𝑡 ≥ 0.                                                                                                                                            

 

Existence and Uniqueness of Solution   To establish the conditions for the existence and uniqueness of the 

solution for the model (2) – (6), let 

 𝑓1(𝑡, 𝑥) = 𝑝 − (𝜆 + 𝜌 + 𝜇)𝑆,       (8) 

 𝑓2(𝑡, 𝑥) = (1 − 𝜙)𝜌𝑆 − (𝜏𝜆1 + 𝜇)𝑆1,     (9) 

 𝑓3(𝑡, 𝑥) = 𝜙𝜌𝑆 − 𝜇𝑆2,       (10) 

 𝑓4(𝑡, 𝑥) = 𝜆𝑆 + 𝜏𝜆1𝑆1 − (𝛿 + 𝛼 + 𝜇)𝐼,     (11) 

 𝑓5(𝑡, 𝑥) = 𝛿𝐼 − (𝑣 + 𝜇)𝑅.       (12) 

So that 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥) = 𝑓(𝑥).        (13) 

 

Theorem 1. Let 𝐷′ represent the region 

 |𝑡′ − 𝑡′0| ≤ 𝑎,  ‖𝑥′ − 𝑥′0‖ ≤ 𝑏,  𝑥 = (𝑥′1, 𝑥′2, … , 𝑥′𝑛) = (𝑥′10, 𝑥′20, … , 𝑥′𝑛0)  

           (14) 

andassume that 𝑓(𝑡′, 𝑥′) meets the Lipschitz condition 

 ‖𝑓(𝑡′, 𝑥′1) − 𝑓(𝑡′1, 𝑥′2)‖ ≤ 𝑘‖𝑥′1 − 𝑥′2‖     (15) 

for(𝑡′, 𝑥′1) and (𝑡′1, 𝑥′2) in𝐷′ and𝑘 > 0. Then, there is a constant 𝛿 > 0 such that there is a unique 

continuous vector solution �̅� ′(𝑡) of equations (8) – (12) in  |𝑡′ − 𝑡′0| ≤ 𝛿. 

𝜕𝑓𝑖

𝜕𝑥′
𝑗

, 𝑖, 𝑗 = 1, 2, … , 𝑛 is continuous and bounded in 𝐷′ and met the condition in equation (15) 

Lemma 1. If 𝑓(𝑡′, 𝑥′) is continuous and has partial derivative  
𝜕𝑓𝑖

𝜕𝑥′
𝑗
 on a bounded closed convex domain ℝ, then it 

satisfies a Lipschitz condition in ℝ. 

The region of interest is given by 
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 1 ≤ 𝜖 ≤ ℝ         (16) 

and bounded solution of the form below is sought for: 

 0 < ℝ < ∞         (17) 

The following existence theorem will be proved: 

Theorem 2: If 𝐷′ represents the region defined in (15) such that (16) and (17) are true, then ∀ a solution of model 

(8) – (12) is bounded in the region 𝐷′. 

Proof. Let 

 𝑓1(𝑡′, 𝑥′) = 𝑝 − (𝜆 + 𝜌 + 𝜇)𝑆,  

 𝑓2(𝑡′, 𝑥′) = (1 − 𝜙)𝜌𝑆 − (𝜏𝜆1 + 𝜇)𝑆1,      

 𝑓3(𝑡′, 𝑥′) = 𝜙𝜌𝑆 − 𝜇𝑆2,        

 𝑓4(𝑡′, 𝑥′) = 𝜆𝑆 + 𝜏𝜆1𝑆1 − (𝛿 + 𝛼 + 𝜇)𝐼,      

 𝑓5(𝑡′, 𝑥′) = 𝛿𝐼 − (𝑣 + 𝜇)𝑅.        

It is sufficient to prove that the continuity of 
𝜕𝑓𝑖

𝜕𝑥′
𝑗

, 𝑖 =  𝑗 = 1, 2, 3, 4, 5 exist. Differentiating  𝑓𝑖 partially with respect 

to the state variables 𝑆, 𝑆1, 𝑆2, 𝐼 and 𝑅, yield: 

 
𝜕𝑓1

𝜕𝑆
= −(𝜆 + 𝜌 + 𝜇), |

𝜕𝑓1

𝜕𝑆
| = |−(𝜆 + 𝜌 + 𝜇)| < ∞    (18) 

 
𝜕𝑓1

𝜕𝑆1
= 0, |

𝜕𝑓1

𝜕𝑆1
| = |0| < ∞      (19) 

 
𝜕𝑓1

𝜕𝑆2
= 0, |

𝜕𝑓1

𝜕𝑆2
| = |0| < ∞      (20) 

 
𝜕𝑓1

𝜕𝐼
= 0, |

𝜕𝑓1

𝜕𝐼
| = |0| < ∞      (21) 

 
𝜕𝑓1

𝜕𝑅
= 0, |

𝜕𝑓1

𝜕𝑅
| = |0| < ∞      (22) 

Also, 

 
𝜕𝑓2

𝜕𝑆
= (1 − 𝜙)𝜌, |

𝜕𝑓2

𝜕𝑆
| = |(1 − 𝜙)𝜌| < ∞    (23) 
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𝜕𝑓2

𝜕𝑆1
= −(𝜏𝜆1 + 𝜇), |

𝜕𝑓2

𝜕𝑆1
| = |−(𝜏𝜆1 + 𝜇)| < ∞    (24) 

 
𝜕𝑓2

𝜕𝑆2
= 0,  |

𝜕𝑓2

𝜕𝑆2
| = |0| < ∞     (25) 

 
𝜕𝑓2

𝜕𝐼
= 0,  |

𝜕𝑓2

𝜕𝐼
| = |0| < ∞     (26) 

 
𝜕𝑓2

𝜕𝑅
= 0,  |

𝜕𝑓2

𝜕𝑅
| = |0| < ∞     (27)  

Similarly, 

 
𝜕𝑓3

𝜕𝑆
= 𝜙𝜌, |

𝜕𝑓3

𝜕𝑆
| = |𝜙𝜌| < ∞      (28) 

 
𝜕𝑓3

𝜕𝑆1
= 0, |

𝜕𝑓3

𝜕𝑆1
| = |0| < ∞      (29) 

 
𝜕𝑓3

𝜕𝑆2
= −𝜇, |

𝜕𝑓3

𝜕𝑆2
| = |−𝜇| < ∞      (30) 

 
𝜕𝑓3

𝜕𝐼
= 0, |

𝜕𝑓3

𝜕𝐼
| = |0| < ∞      (31) 

 
𝜕𝑓3

𝜕𝑅
= 0, |

𝜕𝑓3

𝜕𝑅
| = |0| < ∞      (32) 

Furthermore, 

 
𝜕𝑓4

𝜕𝑆
= 𝜆, |

𝜕𝑓4

𝜕𝑆
| = |𝜆| < ∞      (33) 

 
𝜕𝑓4

𝜕𝑆1
= 𝜏𝜆1, |

𝜕𝑓4

𝜕𝑆1
| = |𝜏𝜆1| < ∞      (34) 

 
𝜕𝑓4

𝜕𝑆2
= 0, |

𝜕𝑓4

𝜕𝑆2
| = |0| < ∞      (35) 

 
𝜕𝑓4

𝜕𝐼
= −(𝛿 + 𝛼 + 𝜇), |

𝜕𝑓4

𝜕𝐼
| = |−(𝛿 + 𝛼 + 𝜇)| < ∞    (36) 

 
𝜕𝑓4

𝜕𝑅
= 0, |

𝜕𝑓4

𝜕𝑅
| = |0| < ∞      (37) 

Finally, 
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𝜕𝑓5

𝜕𝑆
= 0, |

𝜕𝑓5

𝜕𝑆
| = |0| < ∞      (38) 

 
𝜕𝑓5

𝜕𝑆1
= 0, |

𝜕𝑓5

𝜕𝑆1
| = |0| < ∞      (39) 

 
𝜕𝑓5

𝜕𝑆2
= 0, |

𝜕𝑓5

𝜕𝑆2
| = |0| < ∞      (40) 

 
𝜕𝑓5

𝜕𝐼
= 𝛿, |

𝜕𝑓5

𝜕𝐼
| = |𝛿| < ∞      (41) 

 
𝜕𝑓5

𝜕𝑅
= −(𝑣 + 𝜇), |

𝜕𝑓5

𝜕𝑅
| = |−(𝑣 + 𝜇)| < ∞    (42) 

It has been shown that the partial derivatives (18) – (42) of the right-hand side of (2) – (6) with respect to 

𝑆, 𝑆1, 𝑆2, 𝐼, 𝑅 are continuously differentiable and bounded. Hence, by Theorem 2, it is locally Lipschitz, therefore, 

𝑆(𝑡), 𝑆1(𝑡), 𝑆2(𝑡), 𝐼(𝑡), 𝑅(𝑡) is a unique solution to system (2) – (6) with the initial condition  𝑆0, 𝑆10, 𝑆20, 𝐼0, 𝑅0 in the 

region 𝐷′. 

 

Invariant Region 

Lemma 2. The region 𝐷 ⊂ ℝ+
5  is positively invariant for the equation (2) – (6) with zero or positive initial condition 

in ℝ+
5 . 

Proof. From Equation (7), it is shown that, 

 
𝑑𝑁

𝑑𝑡
= 𝑝 − 𝜇𝑁 − 𝛼𝐼 − 𝑣𝑅 

 ⇒
𝑑𝑁

𝑑𝑡
≤ 𝑝 − 𝜇𝑁 

 ⇒ 𝑁(𝑡) ≤ 𝑁(0)𝑒𝜇𝑡 +
𝑝

𝜇
(1 − 𝑒−𝜇𝑡) 

If 𝑁(0) ≤ 0, then 𝑁(𝑡) ≤
𝑝

𝜇
. Hence, equations (2) – (6) will be studied in the feasible region 𝐷 ⊂ ℝ+

5 , with 

 𝐷 = {𝑆,  𝑆1,  𝑆2, 𝐼, 𝑅 𝜖 ℝ+
5 ∶  0 ≤ 𝑁 ≤

𝑝

𝜇
}. 

Thus, 𝐷 is a positively invariant set and a global attractor of the system (2) – (6). That is, any phase trajectory 

initiated anywhere in the non-negative region  ℝ+
5  of the phase space eventually enters region 𝐷 and remains in 𝐷 

thereafter. 

 

Positivity and Boundedness of Solutions 

Lemma 3. The solution of the system (2) – (6), {𝑆,  𝑆1,  𝑆2, 𝐼, 𝑅}, with initial condition, {𝑆0,  𝑆10,  𝑆20, 𝐼0, 𝑅0 ≥
0} ∈ 𝐷, will remain greater than zero for all time 𝑡 ≥ 0.  

Proof.  From equation (2),  
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𝑑𝑆

𝑑𝑡
= 𝑝 − 𝜆𝑆 − 𝜌𝑆 − 𝜇𝑆 

 ≥ −𝜆𝑆 − 𝜌𝑆 − 𝜇𝑆 

∫
𝑑𝑆

𝑆
= − ∫(𝜆 + 𝜌 + 𝜇) 𝑑𝑡 

⇒ 𝑆 ≥ 𝑆0𝑒− ∫(𝜆+𝜌+𝜇)𝑑𝑡 ≥ 0 

Similarly, it can be shown that 𝑆1(𝑡) ≥ 0, 𝑆2 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0 for all time 𝑡 > 0. 

Critical Points and Basic Reproduction Number (𝑹𝟎) 

Equations (2) – (6) have two critical points: Disease-free equilibrium (DFE) and endemic equilibrium (EE) points. 

At equilibrium, the right-hand side of the model (2) – (6) is zero (George, 2019). Hence 

 (𝑆∗, 𝑆1
∗, 𝑆2

∗, 𝐼∗, 𝑅∗) = (
𝑝

𝜌+𝜇
,

(1−∅)𝜌𝑝

𝜇(𝜌+𝜇)
,

∅𝜌𝑝

𝜇(𝜌+𝜇)
, 0, 0)      (43) 

The basic reproduction number (𝑅0) is the average number of secondary infections when a typical infective enters a 

susceptible population. In this study, 𝑅0 is the average number of new diphtheria infections generated by a single 

diphtheria-infected individual throughout infection of the individual in a completely susceptible population 

(Diekmann et al., 1990; Anderson & May, 1991; Hethcote, 2000; Driessche&Watmough, 2002).The magnitude of 

𝑅0 not only indicates the speed of how a disease will spread, but whether it will spread at all.  

Using the next-generation matrix, the basic reproduction number (𝑅0) can be determined. According to Driessche 

and Watmough (2002), the basic reproduction number (𝑅0) is given by the dominant eigenvalue of 𝐹𝑉−1, where𝐹 

and 𝑉 respectively represent the new infection term and the remaining transfer terms Hence, 

 𝐹 = 𝜆𝑆 + 𝜏𝜆1𝑆1 and 𝑉 = 𝛿 + 𝛼 + 𝜇. So that, 𝑉−1 =
1

𝛿+𝛼+𝜇
.  

 ∴ 𝑅0 = 𝐹𝑉−1 

 =
𝜆𝑆∗+𝜏𝜆1𝑆1

∗

(𝛿+𝛼+𝜇)
=

𝛽1𝑝

(𝜌+𝜇)(𝛿+𝛼+𝜇)
+

𝜏𝛽2(1−𝜙)𝜌𝑝

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
=

𝒑[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]

(𝜌+𝜇)(𝛿+𝛼+𝜇)
  (44) 

 

Sensitivity Analysis 

The sensitivity indices of the parameters in the model with respect to 𝑅0 are computed as follows: 

 

𝑝: 𝑋𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0
= [

[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
] ×

𝑝𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝒑[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
= 1 

𝛽1: 𝑋𝛽1

𝑅0 =
𝜕𝑅0

𝜕𝛽1
×

𝛽1

𝑅0
= [

𝑝𝜇

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
] ×

𝛽1𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝒑[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
𝜇𝛽1

𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌
=

0.02×0.8

0.02×0.8+0.6×0.7(1−0.5)0.6
=

0.016

0.142
= 0.1127 
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𝛽2: 𝑋𝛽2

𝑅0 =
𝜕𝑅0

𝜕𝛽2
×

𝛽2

𝑅0
= [

𝑝𝜏(1−𝜙)𝜌

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
] ×

𝛽2𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
𝛽2𝜏(1−𝜙)𝜌

𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌
=

0.7×0.6×0.5×0.6

0.02×0.8+0.6×0.7(1−0.5)0.6
=

0.126

0.142
= 0.8873 

𝜏: 𝑋𝜏
𝑅0 =

𝜕𝑅0

𝜕𝜏
×

𝜏

𝑅0
= [

𝑝𝛽2(1−𝜙)𝜌

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
] ×

𝜏 𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
𝛽2𝜏(1−𝜙)𝜌

𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌
=

0.7×0.6×0.5×0.6

0.02×0.8+0.6×0.7(1−0.5)0.6
=

0.126

0.142
= 0.8873 

𝜌: 𝑋𝜌
𝑅0 =

𝜕𝑅0

𝜕𝜌
×

𝜌

𝑅0
=

𝑝{𝜏𝛽2(𝜌+𝜇)(1−𝜙)−[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]}

𝜇(𝜌+𝜇)2(𝛿+𝛼+𝜇)
×

𝜌 𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
𝜌{𝜏𝛽2(𝜌+𝜇)(1−𝜙)−[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]}

𝜇(𝜌+𝜇)[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
0.6{0.6×0.7(0.6+0.02)(1−0.5)−[0.02×0.8+0.6×0.7(1−0.5)0.6]}

0.02(0.6+0.02)[0.02×0.8+0.6×0.7(1−0.5)0.6]
 

   =
−0.00708

0.1544
= −0.0459 

𝜇: 𝑋𝜇
𝑅0 =

𝜕𝑅0

𝜕𝜇
×

𝜇

𝑅0
=  

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)𝛽1−[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌][(𝜌+2𝜇)(𝛿+𝛼+𝜇)+𝜇(𝜌+𝜇]

(𝜌+𝜇)(𝛿+𝛼+𝜇)[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

  =
0.02(0.62)(0.7)(0.8)−[(0.02)(0.8)+(0.6)(0.7)(0.5)(0.6)](0.64)(0.7)+(0.02)(0.62)

(0.6+0.02)(0.5+0.10+0.02)[0.02×0.8+0.6×0.7(1−0.5)0.6]
 

  = −
0.3567

0.0521
= −6.8464 

∅: 𝑋∅
𝑅0 =

𝜕𝑅0

𝜕∅
×

∅

𝑅0
= [−

𝑝𝜏𝛽2𝜌

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
] ×

∅𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   =
𝛽2𝜏∅𝜌

𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌
=

0.7×0.6×0.5×0.6

0.02×0.8+0.6×0.7(1−0.5)0.6
=

0.126

0.142
= −0.8873 

𝛼: 𝑋𝛼
𝑅0 =

𝜕𝑅0

𝜕𝛼
×

𝛼

𝑅0
=

−𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]𝜇(𝜌+𝜇)

𝜇2[(𝜌+𝜇)(𝛿+𝛼+𝜇)]2 ×
𝛼𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   = −
(𝜌+𝜇)𝛼

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
 

   = −
(0.6+0.02)0.10

0.02(0.6+0.02)(0.5+0.10+0.02)
= −

0.062

0.007688
= −8.0645 
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𝛿 𝑋𝛿
𝑅0 =

𝜕𝑅0

𝜕𝛿
×

𝛿

𝑅0
=

−𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]𝜇(𝜌+𝜇)

𝜇2[(𝜌+𝜇)(𝛿+𝛼+𝜇)]2 ×
𝛿𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

   = −
(𝜌+𝜇)𝛿

𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)
 

   = −
(0.6+0.02)0.5

0.02(0.6+0.02)(0.5+0.10+0.02)
= −

0.31

0.007688
= −40.3226 

𝑣: 𝑋𝑣
𝑅0 =

𝜕𝑅0

𝜕𝑣
×

𝑣

𝑅0
=  

𝑣𝜇(𝜌+𝜇)(𝛿+𝛼+𝜇)

𝑝[𝜇𝛽1+𝜏𝛽2(1−𝜙)𝜌]
 

=
(0.02)(0.02)(0.6 + 0.02)(0.5 + 0.10 + 0.02)

[0.02 × 0.8 + 0.6 × 0.7(1 − 0.5)0.6]0.029
=

. 00015376

0.004118
= 0.0373 

A summary of the sensitivity indices calculated above is given in Table 3 below: 

Table 3: Numerical values of the sensitivity indices 

Parameter Sensitivity index 

𝑝 1.0000 

 
𝛽1 0.1127 

 
𝛽2 0.8873 

 
𝜏 0.8873 

 
𝜌 −0.0459 

 
𝜇 −6.8464 

 
∅ −0.8873 

 
𝛿 −40.3226 

 
𝛼 −8.0645 

 
𝑣 0.0373 

 

A positive index indicates that, as the value increases, the reproduction number (𝑅0) increases and an increase in the 

negative index will decrease the value of 𝑅0. 

 

Effect of the Parameters on the Reproduction Number (𝑅0) 

The rate of susceptible individuals knowing their infectious status (𝜌), the natural death rate (𝜇), the proportion of 

aware susceptible individuals who are vaccinated (∅), the treatment rate of diphtheria infectives (𝛿) and disease-

induced death rate of infectives (𝛼) are the negatively indexed parameters. Increasing these parameters will decrease 

the reproduction number (the response function) thereby containing the transmission of the virus. On the other hand, 

recruitment rate (𝑝), incidence rate of unaware susceptible individuals (𝛽1), incidence rate of aware susceptible 

individuals (𝛽2), modification parameter (𝜏) and disease-induced death rate of treated diphtheria infectives (𝑣) are 

the positively indexed parameters. Increasing these parameters will increase the value of the reproduction number 

and the disease will be endemic. 

 

Conclusion 

Since the parameters with negative indices are the most significant parameters affecting the reproduction number, 

these parameters must be the target for control intervention strategies. An increase in the values of these parameters 

will decrease the reproduction number, while a decrease in the parameters will increase the reproduction number. If 
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the reproduction number increases, then there will be an escalation of the disease. Similarly, if the positively 

indexed parameters increase in value, then the reproduction number will increase and this will lead to the prevalence 

of the disease. It is therefore recommended that relevant agencies closely monitor the sensitivity indices. 
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