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Abstract 

In developing economies, reducing waste in hard-earned electricity generation has been a major problem. As a 

case of interest, the issues of unit of power commitment decision-making have befuddled the post-privatised 

electricity framework in Nigeria. This choice simply determines how many units of power should be provided to 

a certain location at a given time. To address this issue, a novel model known as the Automated Fuzzy Inference 

Engine (AFIE) was formulated that mathematically suggests the output in the fuzzy rules in the inference engine 

instead of relying on intuition and the ranking method of fuzzification to detect the output. Python was utilized 

in the AFIE model experiment. As a fallout of this, some algorithms were birthed in the process of formulating 

data sets. According to the model, every 5°C increase in temperature increases electricity consumption by 

0.96%. The models support previous findings and the premise that electricity usage is related to temperature, 

humidity, and standard of living. It also confirms that rainfall has a negligible relationship con electricity use. 

However, this study discovered that electricity supply is inversely correlated to rainstorms and directly 

proportional to bill payment history and living standards. Applying the import of this model will put 

stakeholders in the vantage position to prevent mistakes caused by users setting output values intuitively. 

Furthermore, this approach may be applied to any fuzzy predictive model as long as the input parameters are 

correctly categorised and weighted in relation to the output. 
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Introduction 

Electricity management and its distribution rely heavily on electricity load prediction (Ali & Vasira, 2018), as 

decisions about where and when to drop electric loads must be made quickly. The variation in size, load 

demand, and living standards has necessitated the need to accurately determine ahead of time the unit of 

electricity to be committed to any given location. Konica and Hanelli (2016) view electric load prediction as the 

process of forecasting future electric needs based on the available past load information. Predicting electricity 

will enhance the operation and management of electricity in order to maximise profit is considered one of the 

most important parameters in unit commitment planning, as opined by Madrid and Antonio (2021).  

Furthermore, the electricity that is costly and is generated in Nigeria by the combined generation company 

GenCos and transmitted to the distribution company DisCos by the transmission company of Nigeria (TCN) is 

yet to be fully utilized, leaving substantial parts of it unused as opposed to the fact that it is even far below the 

demand (Federal Government of Nigeria Power Sector Recovery Plan 2018-2021). Both the TCN and the 

DisCos trade blame for this problem. The DisCos say that the TCN is not dropping power at the right place, 

while the TCN says that the DisCos do not have the right equipment to accept all the power sent to their 

substation (Okere, 2018). 

 

The challenges faced by Discos that resulted in insufficient utilisation of TCN power are as a result of weak and 

inadequate network coverage and overloaded transformers (Onochie, 2015). Additionally, is to incorrectly drop 

electricity loads to locations that may have fewer demands for electricity or with no financial backup to pay for 

its consumption. Admittedly, Manoj and Shah (2015) addressed this problem by predicting ahead of time the 

unit commitment decision for a given location. More so, Oluwatoyin et al. (2015) established that the 

generation, transmission, and distribution of voltage in the right location and at the right time is a major 

http://www.fnasjournals.com/
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challenge, retarding economic growth in most developing countries. Furthermore, Rizwan and Alharbi (2021) 

demonstrated that while performing short-term load prediction using the fuzzy logic method and only 

considering previous load history, the study was successful in predicting the hourly load of some selected 

locations and revealed that the fuzzy logic results were better than the neural network results. However, merely 

taking into account, the prior load history may impair the accuracy of the outcome. Similarly, Khadijah et al. 

(2021) used the fuzzy logic method to predict ahead of time the electric load demand of some shopping malls 

while investigating the weekly load requirements of those areas. The study also attempted to compare the 

accuracy of results using ARIMA and the fuzzy logic method. It discovered that holiday consumption is higher 

than non-holiday consumption, and the fuzzy logic technique surpassed the ARIMA method. This study, 

nevertheless, is confined to only three inputs, namely: time, temperature, and past load history. 

 

This study is aimed at developing a model that automatically generates a fuzzy inference engine FIE by 

supplying the input variables with their respective variables as well as their weight or impact with respect to 

each variable. The weight for each variable is necessary because Ali et al. (2016) argue that temperature has a 

greater effect on load demand than humidity. More so, unlike temperature, which greatly determines the amount 

of electricity consumed, rainfall, in some cases, has minimal impact on power consumption, as observed by 

Jakuenoks and Laizāns (2016) while trying to intuit that "there is a strong correlation between weather 

parameters and power consumption." The study showed that there is an insignificant correlation between rainfall 

and power consumption. However, Jakuenoks and Laizns (2016) proved that there is a partial correlation 

between rainfall and the amount of sunshine and power consumption. In agreement with this, Penggunaan et al. 

(2019) identified five main climatic variables, average temperature, average rainfall, forest area, carbon dioxide 

emission, and arable land. The study showed that there is a unidirectional relationship between average 

temperature, average rainfall, and power consumption. However, Hernández et al. (2012) considered several 

climatic variables and discovered that average precipitation and average pressure have no correlation with 

power consumption. According to the study, while temperature, solar radiation, and average humidity have a 

much stronger relationship with power consumption, wind speed and direction have a negligible relationship 

with it. However, Audu, et al. (2021) evidently established that supply-required factors (SRF) such as standard 

of living and historical bill payment also affect electric demand and were used as factors that balanced demand 

and supply of electricity to customers. It is therefore worthwhile to consider the weight of each variable, as 

extant studies reveal varying degrees of impact each variable may have with respect to the output being the load 

prediction as represented in the FIE. 

 

Materials and Methods 

Proposed Fuzzy Logic Prediction Model 

For example, given a temperature T, humidity H, rainstorm R, time t, previous load history p, standard of living 

S, and bill payment history B as the input parameters (antecedents) for a fuzzy model for the prediction of 

electric load demand-supply balance for a given location, with the consequence P being the predicted load. 

Fuzzy systems use the following criteria to divide antecedents and consequences into different language groups: 

 

𝑇 = {
Excessively Low, Very Very low, Very Low, Low, Normal, High, Very High

Very Very High, Excessively High 
}   1 

H = {Very Very Dry, Very Dry, Dry, Normal,Wet, Very Wet, Very Very Wet}     2 

R = {No Rainstorm, Low Rainstorm, High Rainstorm}       3 

t = {
Mid Night, Torward Morning, Early Morning,Mid Morning, Noon

Afternoon, Early Evening, Night, Late Night
}      4 

p =  {
Excessively Low, Very Very low, Very Low, Low, Normal, High, Very High

Very Very High, Excessively High 
}   5 

S = {Poorest,   Fairly Poor,Moderate, Faily Rich Rich}       6 

B = {Very Low, Low, Average, High, Very High}        7 

P =  {
Excessively Low, Very Very low, Very Low, Low,Normal, High, Very High

Very Very High, Excessively High 
}    8 

 

Table 1 defines the number of membership function MF and their corresponding upper bounds. It shows that 

whereas serial numbers 1–7 are the antecedents’ part of the FIE, number 8 is the consequence. The number of 

their MF representing their associated linguistic variable is further elaborated as in (1) to (7). As illustrated in 

Table 1, the upper bound of each variable is equal to the number of MF. 
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Table 1: Input and output variables, as well as the number of MF that correspond to them 

S/N INPUTS/OUTPUT VARIABLES NUMBER OF MF UPPER BOUND 

1 Temperature 9 9 

2 Humidity 7 7 

3 Rainstorm  3 3 

4 Time 9 9 

5 Previous Load History 9 9 

6 Standard of Living 5 5 

7 Bill Payment History 5 5 

8 Predicted Load 9 9 

 

Let the upper bound for 𝑇 = 𝑢1            9 

Upper bound of 𝐻 = 𝑢2              10 

Upper bound of 𝑅 = 𝑢3             11 

Upper bound of 𝑡 = 𝑢4              12 

Upper bound of 𝑝 = 𝑢5               13 

Upper bound of 𝑆 = 𝑢6             14 

Upper bound of 𝐵 = 𝑢7              15 

Upper bound of 𝑃 = 𝑢8           16 

Where upper bound 𝒖𝒊 is the number of linguistic variables or MF for T, H, R, t, p, S, B and P respectively. 

Let the initial value of all the antecedents be 𝒂 

Let 𝑅𝑚𝑎𝑥 = 𝑢1 × 𝑢2 × 𝑢3 × 𝑢4 × 𝑢5 × 𝑢6 × 𝑢7          17 

Where 𝑹𝒎𝒂𝒙  is the size of the matrix of all possible combinations of the antecedents corresponding to their 

respective consequences represented as in (18?) 

 

[

𝑇(𝑎)  𝐻(𝑎)  𝑅(𝑎)     𝑡(𝑎)  𝑝(𝑎)     𝑆(𝑎)  𝐵(𝑎)

⋮
 

𝑇(𝑢1) 𝐻(𝑢2) 𝑅(𝑢3)   𝑡(𝑢4) 𝑝(𝑢5)   𝑆(𝑢6) 𝐵(𝑢7)

] =  

[
 
 
 
𝑃(𝑏) 
⋮ 
 

𝑃(𝑢8)]
 
 
 
      18 

For each row on the left-hand side (LHS) of the matrix, the corresponding output, P(RHS) is determined by 

some underlying computations as follows: 

The ratio r is the weight or a factor representing the impact of each variable on the output P. r is defined 

intuitively as what may be perceived with respect to P. 

Let  𝒓𝟏 be the ratio of T 

 𝒓𝟐 be the ratio of H 

 𝒓𝟑 be the ratio of R 

 𝒓𝟒 be the ratio of t 

 𝒓𝟓 be the ratio of p 

 𝒓𝟔 be the ratio of S 

 𝒓𝟕 be the ratio of B 

 

Then the total ratio 𝑡𝑜𝑡𝑎𝑙_𝑟 is defined as: 

𝑡𝑜𝑡𝑎𝑙_𝑟 =  𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟5 + 𝑟6 + 𝑟7           19 
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A fraction f is needed to generate the sequences (the equivalent of each linguistic variable in the FIE) and is 

defined as: 

𝑓 = (
𝑟𝑖

𝑡𝑜𝑡𝑎𝑙_𝑟
) × 𝑢8           20 

 
The sequence which is equivalent to linguistic variables for each antecedent is obtained using the general 

formula for arithmetic progression defined as: 

𝑎𝑛 = 𝑎 + (𝑛 − 1)𝑑             21 

Where is the term under consideration, a is the first term in the sequence, n is the number of sequences, and d is 

the difference. 

The difference d is defined as: 

𝑑 =
𝑓

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡
= 𝑎           22 

From (21), the sequence of all consequences can be computed in order to generate a matrix whose sum of its 

rows represents the value of the predicted load P in the FIE. 

 

Working Illustration 

𝑖𝑓 𝑢1 = 9, 𝑢2 = 7, 𝑢3 = 3, 𝑢4 = 9, 𝑢5 = 9. 𝑢6 = 5, 𝑢7 = 5 𝑎𝑛𝑑 𝑢8 = 9  

Also, 

𝑖𝑓 𝑟1 = 3, 𝑟2 = 1, 𝑟3 = 10, 𝑟4 = 1, 𝑟5 = 2 𝑎𝑛𝑑 𝑟6 = 5 𝑎𝑛𝑑 𝑟7 = 5 

 

𝑡𝑜𝑡𝑎𝑙𝑟 = 3 + 1 + 10 + 1 + 2 + 5 + 5 = 26 

The sequence for T is computed using (21). However, in order to find the difference d as in (21), a fraction f is 

required. 

 

Where 𝑓 =  
𝑟𝑖

𝑡𝑜𝑡𝑎𝑙𝑟
× 𝑢8 

 

 𝑟𝑖 = 3, 𝑡𝑜𝑡𝑎𝑙𝑟 = 26 𝑎𝑛𝑑 𝑢8 = 9 

𝑓 =
3

26
× 9 = 1.04 

𝑑 =
𝑓

𝑢1

=
1.04

9
= 0.12 = 𝑎 

Thus: 

𝑇1 = 0.12, 𝑇2 = 0.24, 𝑇3 = 0.36, 𝑇4 = 0.48, 𝑇5 = 0.60, 𝑇6 = 0.72, 𝑇7 = 0.84, 𝑇8 = 0.96 𝑇9 =
1.08 

To compute the sequence for H using (21) 

From (20), 

𝑓 =
1

26
× 9 = 0.35 

𝑑 =
𝑓

𝑢2

=
0.35

7
= 0.05 = 𝑎 

Thus: 

 𝐻1 = 0.05, 𝐻2 = 0.10,   𝐻3 = 0.15, 𝐻4 = 0.20 𝐻5 = 0.25, 𝐻6 = 0.30, 𝐻7 = 0.35 

To compute the sequence for R using (21) 

From (20), 

𝑓 =
10

26
× 9 = 3.46 

𝑑 =
𝑓

𝑢3

=
3.46

3
= 1.15 = 𝑎 

Thus: 

𝑅1 = 1.15, 𝑅2 = 2.30,   𝑅3 = 3.45 

However, since R is inversely proportional to the supply of electricity, 
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𝑅1 = 3.45, 𝑅2 = 2.30,   𝑅3 = 1.15 

 

To compute the sequence for t using (21) 

From (20), 

𝑓 =
1

26
× 9 = 0.35 

𝑑 =
𝑓

𝑢4

=
0.35

9
= 0.03 = 𝑎 

Thus: 

𝑡1 = 0.04, 𝑡2 = 0.08,   𝑡3 = 0.12, 𝑡4 = 0.16 𝑡5 = 0.20, 𝑡6 = 0.24, 𝑡7 = 0.28, 𝑡8 = 0.32,
𝑡9  = 0.36 

To compute the sequence for p using (21) 

From (20), 

𝑓 =
2

26
× 9 = 0.69 

𝑑 =
𝑓

𝑢5

=
0.69

9
= 0.08 = 𝑎 

Thus: 

 𝑝1 = 0.08, 𝑝2 = 0.16,   𝑝3 = 0.24, 𝑝4 = 0.32 𝑝5 = 0.40, 𝑝6 = 0.48, 𝑝7 = 0.56, 𝑝8 = 0.64, 𝑝9  =
0.72 

To compute the sequence for S using (21) 

From (19), 

𝑓 =
5

26
× 9 = 1.73 

𝑑 =
𝑓

𝑢6

=
1.73

5
= 0.35 = 𝑎 

Thus: 

 𝑆1 = 0.35, 𝑆2 = 0.70,   𝑆3 = 1.05, 𝑆4 = 1.40 𝑆5 = 1.75   
 

To compute the sequence for B using (21) 

From (20), 

𝑓 =
5

26
× 9 = 0.96 

𝑑 =
𝑓

𝑢7

=
1.73

5
= 0.35 = 𝑎 

Thus: 

 𝐵1 = 0.35, 𝐵2 = 0.70,   𝐵3 = 1.05, 𝐵4 = 1.40 𝐵5 = 1.75   
Thus, the matrix representing the inference engine is as represented in (23), being all possible combinations of 

the input variables. 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇1  𝐻1  𝑅1     𝑡1  𝑝1     𝑆1  𝐵1

𝑇1  𝐻1  𝑅3     𝑡1  𝑝1     𝑆1  𝐵1

𝑇2  𝐻1  𝑅2     𝑡2  𝑝1     𝑆2  𝐵2

𝑇2  𝐻2  𝑅2     𝑡3 𝑝2     𝑆2  𝐵3

𝑇3  𝐻3  𝑅1     𝑡4  𝑝3     𝑆3  𝐵2

𝑇3  𝐻4  𝑅1     𝑡5  𝑝4     𝑆3  𝐵3

𝑇4  𝐻4  𝑅2     𝑡4  𝑝5     𝑆4  𝐵2

𝑇6  𝐻5  𝑅3     𝑡5  𝑝6     𝑆2  𝐵3

𝑇4  𝐻6  𝑅1     𝑡4  𝑝7     𝑆3  𝐵4

𝑇6  𝐻5  𝑅3     𝑡6  𝑝7     𝑆4  𝐵5 
𝑇8  𝐻7  𝑅1     𝑡8  𝑝5     𝑆1  𝐵2

𝑇7  𝐻3  𝑅1     𝑡7  𝑝6     𝑆5  𝐵5

𝑇6  𝐻6  𝑅3     𝑡8  𝑝5     𝑆2  𝐵4

𝑇2  𝐻2  𝑅2     𝑡2  𝑝2     𝑆2  𝐵2

𝑇3  𝐻3  𝑅3     𝑡3  𝑝3     𝑆3  𝐵3

𝑇4  𝐻4  𝑅1     𝑡4  𝑝4     𝑆4  𝐵4

𝑇5  𝐻5  𝑅1     𝑡5  𝑝5     𝑆5  𝐵5

𝑇5  𝐻5  𝑅2     𝑡2  𝑝5     𝑆5  𝐵5

𝑇5  𝐻5  𝑅3     𝑡5  𝑝5     𝑆5  𝐵5

𝑇6  𝐻6  𝑅1     𝑡6  𝑝6     𝑆1  𝐵1

𝑇6  𝐻6  𝑅2     𝑡6  𝑝6     𝑆2  𝐵2

𝑇6  𝐻6  𝑅6     𝑡6  𝑝6     𝑆3  𝐵3

𝑇7  𝐻7  𝑅1     𝑡7  𝑝7     𝑆4  𝐵4

𝑇7  𝐻7  𝑅2     𝑡7  𝑝7     𝑆5  𝐵5

𝑇7  𝐻7  𝑅3     𝑡7  𝑝7     𝑆1  𝐵2

𝑇8  𝐻6  𝑅1     𝑡8  𝑝8     𝑆2  𝐵3

𝑇9  𝐻7  𝑅3     𝑡8  𝑝9     𝑆4  𝐵3

𝑇9  𝐻7  𝑅2     𝑡8  𝑝9     𝑆2  𝐵5

𝑇9  𝐻7  𝑅1     𝑡9  𝑝9     𝑆3  𝐵3

𝑇9  𝐻7  𝑅1     𝑡9  𝑝9     𝑆5  𝐵5

.

.

.
𝑇9  𝐻7  𝑅3     𝑡9  𝑝9     𝑆5  𝐵5 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑃(𝑏)
.
 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝑃(𝑢8)]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         

 
Substituting the value of   𝑇1, 𝑇2, … 𝑇9, 𝐻1, 𝐻2, … 𝐻7,
𝑅1, 𝑅2, 𝑅3, 𝑡1, 𝑡2, . . , 𝑡9, 𝑝1, 𝑝2, … 𝑝9, 𝑆1, 𝑆2, … 𝑆5 𝑎𝑛𝑑 𝐵1, 𝐵2, … 𝐵5   in (23), the sequences produced for each input 

variable result in: 

 𝑃(1) = 0.12 + 0.05 + 3.43 + 0.04 + 0.08 + 0.35 + 0.35 = 4.42 

 𝑃(2) = 0.24 + 0.05 + 1.15 + 0.08 + 0.08 + 0.35 + 0.35 = 2.303 

 𝑃(2) = 0.24 + 0.05 + 2.30 + 0.08 + 0.08 + 0.70 + 0.70 = 4.07 

 𝑃(3) = 0.24 + 0.10 + 2.30 + 0.12 + 0.16 + 0.70 + 1.05 = 4.67 

 𝑃(4) = 0.36 + 0.15 + 3.45 + 0.16 + 0.24 + 1.05 + 0.70 = 6.11 

 𝑃(5) = 0.12 + 0.20 + 3.45 + 0.20 + 0.32 + 1.05 + 1.05 = 6.39 

 𝑃(6) = 0.48 + 0.20 + 2.30 + 0.16 + 0.40 + 1.40 + 0.70 = 5.64 

 𝑃(7) = 0.72 + 0.25 + 1.15 + 0.20 + 0.48 + 0.70 + 1.15 = 4.65 

 𝑃(8) = 0.48 + 0.30 + 3.45 + 0.16 + 0.56 + 1.05 + 1.40 = 7.40 

 𝑃(9) = 0.75 + 0.30 + 3.45 + 0.16 + 0.56 + 1.40 + 1.75 = 8.37 

 𝑃(10) = 0.84 + 0.35 + 3.45 + 0.32 + 0.40 + 0.35 + 0.75 = 6.46 

 𝑃(11) = 0.84 + 0.15 + 3.45 + 0.28 + 0.45 + 1.75 + 1.75 = 7.31 

 𝑃(12) = 0.72 + 0.30 + 1.15 + 0.32 + 0.40 + 0.70 + 1.40 = 4.99 

 𝑃(13) = 0.24 + 0.10 + 2.30 + 0.08 + 0.16 + 0.70 + 0.70 = 4.28 

 𝑃(14) = 0.36 + 0.15 + 1.15 + 0.12 + 0.24 + 1.05 + 1.05 = 4.12 

 𝑃(15) = 0.48 + 0.20 + 3.45 + 0.16 + 0.32 + 1.40 + 1.40 = 7.41 

 𝑃(16) = 0.60 + 0.25 + 3.45 + 0.20 + 0.40 + 1.75 + 1.75 = 8.00 
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 𝑃(17) = 0.60 + 0.25 + 2.30 + 0.08 + 0.40 + 1.75 + 1.75 = 713 

 𝑃(18) = 0.60 + 0.20 + 1.15 + 0.20 + 0.40 + 1.75 + 1.75 = 6.05 

 𝑃(19) = 0.72 + 0.30 + 3.45 + 0.24 + 0.48 + 0.35 + 0.35 = 5.89 

 𝑃(20) = 0.72 + 0.30 + 1.15 + 0.24 + 0.48 + 1.15 + 1.15 = 5.19 

 𝑃(21) = 0.84 + 0.35 + 3.45 + 0.28 + 0.56 + 1.40 + 1.40 = 8.28 

 𝑃(22) = 0.84 + 0.35 + 2.30 + 0.28 + 0.56 + 1.75 + 1.75 = 7.47 

 𝑃(23) = 0.84 + 0.35 + 1.15 + 0.28 + 0.56 + 0.35 + 0.70 = 4.23 

 𝑃(24) = 0.96 + 0.30 + 3.45 + 0.32 + 0.64 + 0.70 + 1.05 = 7.42 

 𝑃(25) = 0.96 + 0.30 + 3.45 + 0.32 + 0.64 + 1.05 + 1.05 = 7.77 

 𝑃(26) = 1.05 + 0.35 + 1.15 + 0.32 + 0.72 + 1.40 + 1.05 = 7.74 

 𝑃(27) = 1.05 + 0.35 + 2.30 + 0.32 + 0.72 + 0.70 + 1.75 = 6.19 

 𝑃(28) = 1.05 + 0.35 + 3.45 + 0.36 + 0.72 + 1.75 + 1.75 = 9.43 

 

 

 

 𝑃(𝑚) = 1.05 + 0.35 + 1.15 + 0.36 + 0.72 + 1.75 + 1.75 = 7.13 

 

The sum of   𝑃(1), 𝑃(2)…  𝑃(𝑏𝑚)
 (each row) after approximation to the nearest integer gives the value p in the FIE. 

Each row represents a single line in the FIE based on linguistic variables as described in (1) … (7). Thus (23) 

and the resulting summation will give the FIE as attached Appendix A. 

 

Inference Engine 

The inference engine constitutes the entire rule set for the system and is responsible for selecting the appropriate 

rules from the rule based on the knowledge base. The first part of the development of the inference engine for 

this work was the generation of combination values for all input variables with respect to the number of 

linguistic terms for each input variable. The study succeeded in formulating a mathematical model that 

automatically assigned the value of the predicted load for each rule formed from the combination of all possible 

rules. A total of about 347,000 combinations were generated, which were subsequently used in generating the 

fuzzy rules for this study. The combination algorithm is as shown in algorithm 1. 

Algorithm 1: The algorithmm for generating all possible combinations of inputs in data set generated using 

recursive approach 

def combination (store, items, start_index): 

1. If start_index is greater or equal to length of items, return from recursive call 

2.  Set i to 0 and repeat the following until i is less than length of items 

3.  Set j to 1 and repeat until j equals item at position i 

4  Copy all the elements in items to a new list tmp 

5  Set the ith element of the new list tmp to the value of j 

6  Add the modified list tmp to store 

7  Recurse with i + 1 as the starting index 

8  Delete list tmp 

 

Furthermore, in determining the predicted load for each variable, each variable was assigned a ratio representing 

its impact on the result. This study created a relationship between input variables and the corresponding output. 

This was achieved by assigning different weights to the input variables depending on their prevailing 

consequence on the output. Rainstorm R has the highest weight, followed by the supply-required factors: 

standard of living (SoL) and bill payment history (BPH). Temperature T has the highest weight among the 

demand-required factors. Whereas Algorithm 2 depicts the establishment of the relationship between input and 

output variables, Algorithm 3 puts all the algorithms together to give the fuzzy predicted model. 

Algorithm 2: Algorithm for computing the relationship between all variables with respect to the output 
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Def compute(upper_bound, output_upper_bound, inverse = False): 

1.   create a new list of data 

2.   divide output_upper_bound by upper_bound and store the quotient in diff 

3.   if inverse is set to false 

4.    loop from 0 to upper_bound with i as the loop counter 

5.    set element in data at position i to (i + 1) x diff 

6.    else if inverse is set to true 

7.   loop from 0 to upper_bound with i as the loop counter 

8.   set element in data at position i to output_upper_bound - ((i + 1) x diff) 

9    return data 

 

Algorithm 3: Algorithm for the load demand-supply balance predictive model 

1. Create and Initialize the antecedents to hold universe variables 

2. Create and initialize the consequent object 

3. Create membership functions for all antecedents’ objects 

4. Create an empty list rules 

5. Read generated dataset for fitting from external comma separated values file 

a. For each row in the data 

b. Create a rule from the columns in the current row 

c.   Add the rule to rules list 

6. Create a control system using the rules list above 

7. Create a simulation object for simulating the system 

8. Simulate the control system with some sets of input 

9. Visualize result 

 

Results  

Inputs were supplied to the model, and the corresponding output in graphical and numeric value is shown in 

Figures 1 and 2 respectively. 

 

 

 

Figure 1: Non-Linear Model Predicted Results for a 

 

 

 

 

 

𝑇 = 38, 𝐻 = 80, 𝑅 = 5, 𝑡 = 17, 𝑝 = 20, 𝑆 = 10, 𝐵 = 15 and P=19.23466254 

𝑇 = 38, 𝐻 = 80, 𝑅 = 45, 𝑡 = 17, 𝑝 = 20, 𝑆 = 10, 𝐵 = 15 and P=10.68016271 
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Figure 2: Non-Linear Model Predicted Results for b 

 

In Table 1, more information about the results and how they relate to the inputs are presented. The linear 

relationship between the input variables and the outputs is further shown in Figure 3. 

Table 1. Model development outcomes 

 

S/N 

Pred. 

Temp

. 

Pred. 

Humidity 

Pred. 

Rainstor

m Time 

Previous 

Load History 

Living 

Standard 

Bill 

Payment 

Predicted 

Results 

1 20 40 10 14 16 40 50 19.85078435 

2 22 70 5 24 18 45 55 23.91980779 

3 30 90 50 16 19 80 85 19.24331729 

4 17 38 3 10 22 60 69 25.88611553 

5 24 68 40 12 14 20 15 11.0137814 

6 30 55 7 14 17 65 70 25.78306812 

7 18 85 52 20 27 80 85 20.47487798 

8 18 85 52 20 27 30 25 12.36601134 

9 40 90 1 15 28 90 95 27.83583489 

10 43 85 45 15 28 90 90 20.98546185 

11 39 70 58 16 26 95 95 20.92479465 

12 38 80 5 17 20 10 15 19.23466254 

13 38 80 45 17 20 10 15 10.68016271 

14 23 75 4 18 21 80 76 26.02712201 

15 17 45 55 19 20 95 75 17.29651328 

16 17 45 7 19 20 95 75 26.09108875 

17 17 45 7 19 20 10 15 18.01319542 

18 15 50 20 1 15 30 35 19.25156917 

19 23 59 16 4 10 70 60 22.68209429 

20 19 22 2 7 17 28 45 19.27917309 
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Figure 3: Relationship between Antecedents and the Consequence in Load Balancing Prediction Based on Gbell 

 

Discussion 
The results show that electricity increases by 0.96% for every 5℃ increase in temperature, as opposed to an 

increase of 0.26% for every 5℃ increase in temperature as outlined by Salehizade et al. (2015). The increased 

electricity consumption in this study is a result of the higher temperature that is associated with the study area as 

compared to the study by Salehizade et al. (2015). Furthermore, some algorithms were developed to generate 

datasets for experimentation to test the model. Additionally, this study further revealed that the consumption of 

electricity is directly proportional to the standard of living and the history of bill payment. This method will 

reduce errors resulting from users' intuitively assigning output values in the fuzzy inference engine development 

procedure.  

 

Conclusion 

This research proposed a model that takes temperature T, humidity H, rainstorm R, time t, previous load history 

P, standard of living S, and bill payment history B as the input parameters (antecedents) as well as the weight or 

the impact of each input variable as may be defined or perceived by the users in order to automatically generate 

a FIE for any given fuzzy predictive model or the prediction of electric load demand-supply balance for a given 

location. The results affirmed the linear relationship that exists between load consumption and temperature and 

humidity. However, it was revealed that load supply is inversely proportional to rainstorms. This is a result of 

the overhead distribution of electricity in the study area (Nigeria), which is easily affected by rainstorms, 

resulting in a minimal supply of electricity during heavy rainstorms. Furthermore, this model can be applied to 

any fuzzy predictive model as long as the input parameters are properly classified and assigned their weight with 

respect to the output. 

 

Recommendations  

The results affirmed the linear relationship that exists between load consumption and temperature and humidity.  

1. This paper recommends that in considering the load consumption there is a need to consider the 

temperature and humidity of the area.  

2. These factors need to be looked into very well. There is a need for more research in this field so that 

the weaknesses can be addressed as other factors may have a serious impact on load consumption. 

Similar locations should be used to test the prediction of electric load demand-supply balance. 
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Appendix A 

Rule1= If T(excessively_low) & H(very_very_wet) & R(very_high_rainstorm) & t(mid_night) & 

p(excessively_low) & S(poorest) & B(very_low) then P(very_very_low) 

Rule2= T(excessively_low) & H(very_very_wet) & R(no_rainstorm) & t(mid_night) & p(excessively_low) & 

S(poorest) & B(low) then P(average) 

Rule3= T(very_very_low) & H(very_very_wet) & R(high_rainstorm) & t(toward_morning) & 

p(very_very_low) & S(poor) & B(average) then P(low) 

Rule4= T(very_very_low) & H(very_wet) & R(high_rainstorm) & t(early_morning) & p(very_very_low) & 

S(moderate) & B(low) then P(low) 

Rule5= T(very_low) & H(wet) & R(very_high_rainstorm) & t(mid_morning) & p(very_low) & S(poor) & 

B(low) then P(high) 

Rule6= T(very_low) & H(normal) & R(very_high_rainstorm) & t(noon) & p(very_low) & S(moderate) & 

B(average) then P(high) 

Rule7= T(low) & H(wet) & R(high_rainstorm) & t(mid_morning) & p(average) & S(rich) & B(low) then 

P(high) 

Rule8= T(high) & H(wet) & R(no_rainstorm) & t(noon) & p(very_high) & S(poor) & B(average) then 

P(avearge) 

Rule9= T(very_low) & H(very_wet) & R(very_high_rainstorm) & t(mid_morning) & p(very_very_high) & 

S(moderate) & B(high) then P(very_high) 

Rule10= T(high) & H(wet) & R(no_rainstorm) & t(afternoon) & p(very_high) & S(fairly_rich) & B(very_high) 

then P(very_very_high) 

Rule11= T(very_very_high) & H(very_very_wet) & R(very_high_rainstorm) & t(night) & p(average) & 

S(poorest) & B(low) then P(high) 
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Rule12= T(very_high) & H(dry) & R(very_high_rainstorm) & t(early_evening) & p(high) & S(rich) & B(high) 

then P(very_high) 

Rule13= T(high) & H(very_wet) & R(no_rainstorm) & t(night) & p(average) & S(poor) & B(very_high) then 

P(average) 

Rule14= T(very_very_low) & H(very_dry) & R(high_rainstorm) & t(toward_morning) & p(very_very_low) & 

S(poor) & B(low) then P(very_low) 

Rule15= T(very_low) & H(dry) & R(no_rainstorm) & t(early_morning) & p(very_low) & S(moderate) & 

B(average) then P(low) 

Rule16= T(low) & H(normal) & R(very_high_rainstorm) & t(mid_morning) & p(low) & S(faily_rich) & 

B(high) then P(very_high) 

Rule17= T(average) & H(very_wet) & R(very_high_rainstorm) & t(noon) & p(low) & S(rich) & B(high) then 

P(very_very_high) 

Rule18= T(average) & H(wet) & R(high_rainstorm) & t(toward_morning) & p(average) & S(rich) & B(high) 

then P(very_high) 

Rule19= T(average) & H(wet) & R(no_rainstorm) & t(noon) & p(average) & S(rich) & B(poorest) then 

P(very_high) 

Rule20= T(high) & H(wet) & R(very_high_rainstorm) & t(afternoon) & p(high) & S(rich) & B(high) then 

P(high) 

Rule21= T(high) & H(very_wet) & R(very_high_rainstorm) & t(afternoon) & p(high) & S(poorest) & 

B(very_low) then P(high) 

Rule22= T(high) & H(very_wet) & R(high_rainstorm) & t(afternoon) & p(high) & S(faily_poor) & 

B(very_low) then P(average) 

Rule23= T(high) & H(very_wet) & R(no_rainstorm) & t(afternoon) & p(high) & S(moderate) & B(average) 

then P(very_very_high) 

Rule24= T(very_high) & H(very_very_wet) & R(very_high_rainstorm) & t(early_evening) & p(very_high) & 

S(faily_rich) & B(high) then P(very_high) 

Rule25= T(very_high) & H(very_very_wet) & R(no_rainstorm) & t(early_evening) & p(very_high) & 

S(poorest) & B(low) then P(low) 

Rule26= T(very_very_high) & H(very_wet) & R(very_high_rainstorm) & t(night) & p(very_very_high) & 

S(faily_poor) & B(average) then P(very_high) 

Rule27= T(extremely_high) & H(very_very_wet) & R(no_rainstorm) & t(night) & p(extremely_high) & 

S(faily_rich) & B(average) then P(very_very_high) 

Rule28= T(extremely_high) & H(very_very_wet) & R(high_rainstorm) & t(night) & p(extremely_high) & 

S(poor) & B(very_high) then P(high) 

Rule29= T(extremely_high) & H(very_very_wet) & R(very_high_rainstorm) & t(late_night) & 

p(extremely_high) & S(moderate) & B(average) then P(extremely_high) 

Rule = Rule30= T(extremely_high) & H(very_very_wet) & R(very_high_rainstorm) & t(late_night) & 

p(extremely_high) & S(rich) & B(avery_high) then P(very_high) 

 


