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Abstract 

The incorporation of advanced technologies in the exploration and advancement of therapeutics derived from 

natural products signifies a groundbreaking phase in research. While traditional approaches to drug discovery 

have their merits, they often encounter issues related to time and cost-effectiveness. AI's utilization of machine 

learning (ML) learning (DL) and data analysis has revolutionized the process of discovering, refining, and creating 

therapeutics. This article explores the efforts between AI and natural product studies emphasizing progressions 

and uses in developing antibiotics and anticancer medications, delving into the techniques, real-life examples, and 

future paths of AI-guided drug discovery from sources. Ranging from forecasting bioactivity and protein targets 

to tuning drug characteristics AI has displayed potential in accelerating the pace and accuracy of pharmaceutical 

innovations. Despite obstacles, the fusion of AI with natural product investigations holds promise for unveiling 

treatments that can significantly enhance well-being.  
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Introduction 

Natural product-based therapeutics have long been a cornerstone of medicinal chemistry and pharmaceutical 

development with sources from plants, micro-organisms and animals. Statistics indicate that more than 80% of 

drug molecules are sourced from natural origins. Over 70% of FDA-approved anticancer medications are derived 

from natural sources. The worldwide market for herbal medications, products, and raw materials is anticipated to 

reach an approximate value of $80-90 billion and is anticipated to increase to $5 trillion by 2050. These 

compounds offer a rich chemical diversity often unparalleled by synthetic libraries, yielding the discovery of 

unique bioactive molecules with potential for therapy (Padma & Don, 2022; Abdul & Khan, 2021; Jagadevappa, 

2016). Natural product-based therapeutics have significantly contributed to various research fields, including 

antibiotic development, anticancer therapies, antiviral agents, antimalarial drugs, dermatological treatments, and 

more. For example, paclitaxel, a plant-based anticancer drug derived from Taxus brevifolia, has been crucial in 

cancer treatment (Sati et al., 2024). Erythromycin, an antibiotic derived from Saccharopolyspora erythraea, has 

revolutionized antibiotic therapy (Wu et al., 2016). Tacrolimus, an immunosuppressant from Streptomyces 

tsukubaensis, is essential in organ transplantation (Ordóñez-Robles et al., 2018). Recent advancements in 

tuberculosis (TB) treatment include natural product-derived drugs such as rifapentine, CPZEN-45, and 

spectinamides 1599 and 1810, highlighting the ongoing importance of natural products in developing new 

therapeutics (Kumar, 2023).  

 
Recently, artificial intelligence (AI) has begun to have a significant impact across different scientific and industrial 

fields, including drug discovery and development. AI includes machine learning (ML), deep learning (DL), and 

other computational methods that provide powerful tools for processing large volumes of data, identifying 

patterns, and making predictions with remarkable speed and accuracy (Joshi et al., 2023). It is centred on building 

machines that can carry out operations that call for human intellect. They involve learning, thinking, solving 

problems, perceiving, comprehending language, and making decisions (Zhang, 2023). AI has the ability to 

completely transform medication research and discovery by speeding up the procedure and cutting related 

expenses. Conventional drug development techniques include a large financial commitment and a protracted trial-

and-error process. (Han et al., 2023). These traditional methods are laborious, time-consuming, and fraught with 

challenges such as identifying active compounds, optimizing their pharmacokinetic properties, and elucidating 

their mechanisms of action (Susana et al., 2023; Inder et al., 2021).  
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However, prospective drug candidates can be identified using AI-driven approaches that evaluate large datasets, 

including chemical, proteomic, and genomic information. The entire drug development process can be accelerated 

by using these technologies, which make it possible to forecast a drug's efficacy and toxicity, identify potential 

therapeutic targets more quickly, and permit drug repurposing (Han et al., 2023). These advanced methods include 

machine learning for predicting drug properties, deep learning for analyzing biological data, natural language 

processing for mining scientific literature, generative modelling for creating new molecules, and network-based 

approaches for identifying drug development targets (Visan & Negut, 2024). According to Saldívar-González et 

al. (2022), advanced algorithms and high-performance computing empower AI to identify and predict molecular 

patterns of bioactive compounds and their interactions with protein targets. This significantly enhances the speed 

and efficiency of drug discovery. AI-driven tools can streamline dereplication by distinguishing novel compounds 

from known ones early in the discovery pipeline. 

 
The application of AI in natural product studies is still in its early stages, and several limitations need to be 

addressed, such as the need for high-quality, curated datasets to train AI models, the integration of AI tools into 

existing experimental workflows, and the interpretation of AI-generated predictions in biologically meaningful 

contexts (Kim et al., 2020). In addition, ethical and legal issues need to be resolved to guarantee the proper 

application of AI in drug discovery (Tiwari et al., 2023). The aim of this article is to provide a thorough review of 

the state of AI applications at the present time in the discovery and development of natural product-based 

therapeutics. We will explore the various AI methodologies employed in this field, discuss case studies and 

successful applications, and identify the limitations and future prospects for research. By harnessing the power of 

AI, we stand at the threshold of a new development in natural product research, with the potential to unlock novel 

therapeutics and improve human health in profound ways. 

 

AI Applications in Natural Product-Based Drug Discovery  

Computational omics technology advancements have vast applications in drug development into the hidden 

natural-based product varieties. Parallel to this, computational drug design has seen promising advancements in 

AI techniques like machine learning, making it easier to predict biological activity and create new drugs for target 

molecular targets (Mullowney et al., 2023). Computer-aided drug discovery has been influenced by AI. The 

development is further facilitated by the increasing application of machine learning, especially deep learning 

models, across a wide range of scientific disciplines and advancements in computer hardware and software. 

Medicinal chemistry has benefited as a result of early concern about AI being replaced by pharmaceutical 

discoveries (Jiménez-Luna et al., 2021). A valuable resource for contemporary drug development includes natural 

compounds produced by fungi, bacteria, plants, animals, and other organisms. Natural products' biological 

relevance and structural diversity make them appealing starting points for the development of new drugs. In 

natural product-based drug development, computational approaches are a helpful precursor or complement to in 

vitro testing (Chen et al., 2017). Machine learning algorithms have been a major area of evolution for the 

pharmaceutical sector, and different supervised and unsupervised learning approaches are being used at different 

stages of the drug development process. Cell-type picture segmentation, protein target drug-ability prediction, and 

de novo molecular design have all used clustering approaches. Regressions and classifications supervised learning 

techniques identified potential targets for Huntington's disease. For drug design and many other applications, they 

hypothesized biological activities and the characteristics of absorption, distribution, metabolism, excretion, and 

toxicity (ADME/Tox) (Vamathevan et al., 2019). Natural product research, a dependable source of contemporary 

small molecule drug discovery, has gradually included computational techniques involving AI and machine 

learning algorithms. For instance, dimensionality reduction methods (such as principal component analysis and 

self-organizing maps) were mostly used in the early 2000s to map the NP chemical space and digitize organic 

molecules. Machine learning binary classifiers were created to forecast their biological roles in the ensuing ten 

years. Recently, researchers have begun using neural network topologies for molecular design and genome mining 

(Ernst et al., 2015). 
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Figure 1.0: The application of machine learning techniques to natural phenomena (NPs) includes encoding them 

into molecular representations, molecular descriptors, similarity scores, chemical space, biological function 

prediction, de-orphanization, and the generation of de novo compounds inspired by natural phenomena (Saldívar-

González et al., 2022). 

 

Translating NPs (or any chemical structure) into computer-readable format(s), or so-called molecular 

representations, is a major step in modeling and forecasting their properties and bioactivities. Most representations 

encode chemical information with a specific intent. It is possible to obtain chemical compounds with similar 

names by using their original IUPAC and generic names. The computational task involved matching chemical 

structures according to the descriptions of their bi-dimensional molecular graphs. Early molecular representations 

were designed to aid in efficient structural searches or to preserve chemical information in a lightweight fashion. 

To identify common molecular features or substructures from databases and to store and retrieve molecular 

information, three tools were developed: the international chemical identifier (InChI), the simplified input line 

entry system (SMILES), and the SMILES arbitrary target specification (SMARTS, Daylight CIS, and OpenEye 

Scientific Software) (Jadhav et al., 2020). In addition to fingerprints, which are frequently employed by chemo 

informaticians, computational chemists would use molecular representations to compute hundreds of attributes or 

variables, known as molecular descriptors, using well-defined techniques. These descriptors capture certain easy-

to-understand molecular qualities (such as atomic properties, size, shape, flexibility, polarity, lipophilicity, and 

pharmacophore). Molecular descriptors have been a key component in creating predictive QSA/PR modeling. In 

low-dimensional representations of chemical space, they have proven indispensable in characterizing the 

distributions of nanoparticles and synthesized chemicals. The bioactivity of natural chemicals is one area where 

machine learning is used in drug discovery. Chemical structures and the biological processes they correspond with 

are included in datasets that can be used to train machine-learning algorithms. Drug research can then proceed 

more quickly thanks to these models' ability to forecast the possible bioactivity of novel substances. To effectively 

forecast the bioactivity of chemicals generated from natural products, for instance, supervised learning algorithms 

such as Random Forest and Support Vector Machines (SVM) have been utilized (Wu et al., 2019). Deep language 

models have been employed to predict the bioactivity of natural compounds. These models can automatically 

learn feature representations from raw data, making them highly effective for complex tasks such as bioactivity 

prediction. In several studies, deep language has outperformed traditional ML methods, demonstrating its potential 

to enhance drug discovery processes (Chen & Xu, 2020; Gao & Ding, 2019). Furthermore, Natural language 

processing techniques have applications in mining literature for information about the bioactivity of natural 

compounds. By processing and analyzing published research articles, NLP algorithms can identify compounds 

with reported bioactivity and aggregate this information into structured databases. This automated extraction of 

knowledge can greatly aid researchers in identifying promising natural compounds for further investigation (Zhao 

& Li, 2018; Shultz, 2019). 
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Additionally, ML can assist in locating possible protein targets for organic substances. In order to do this, 

algorithms are used to examine how tiny chemicals and proteins interact. When ML is used in conjunction with 

techniques like docking simulations, it is possible to forecast which proteins a specific drug will likely interact 

with (Kinnings et al., 2011). The issue of finding protein targets has also been tackled using DL. More accurately 

than with conventional methods, advanced techniques such as graph neural networks (GNNs) can describe the 

interactions between chemicals and proteins. NLP can help by extracting pertinent data from scientific literature, 

which can help find protein targets. While relation extraction techniques can reveal the links between these 

entities, named entity recognition (NER) tools can recognize mentions of proteins, genes, and chemicals in the 

literature (Zhu & Shi, 2021). 

 
AI-Driven Approaches and Case Studies 

Virtual screening 

One essential in silico method used in the drug discovery process is virtual screening (VS) enabling the automated 

evaluation of extensive molecular databases to identify potential therapeutic candidates. By acting as a preliminary 

filter, VS helps to eliminate compounds with less desirable properties, thus narrowing down the pool to those with 

a higher likelihood of biological activity (Oliveira et al., 2023). Throughout the virtual screening process, 

candidate ligands can undergo adjustments in their composition and structure to improve their properties, 

particularly their pharmacokinetic attributes such as toxicity, excretion, metabolism, distribution, and absorption 

(ADMET). A pipeline for virtual screening consists of two primary computational operations. The first step entails 

preparing the library, which includes acquiring compound structures and transforming data into usable formats 

(such as SDF, SMILES, and MOL2) (Saldívar-González et al., 2020), generating conformers, and correcting 

stereochemical and valence errors. In order to filter desirable chemicals, the second step uses computational tools. 

In vitro and in vivo tests, such as enzymatic or cell line inhibition, are the last methods used for experimental 

validation. Artificial intelligence-based virtual screening procedures have made use of a variety of computational 

techniques that have been developed over time. Combining these techniques with experimental methodologies 

increases the likelihood of finding new bioactive chemicals (Santana et al., 2021). Lignon-based virtual screening 

(LBVS) and structure-based virtual screening (SBVS) are the two computer methods used in compound virtual 

screening. In order to find novel bioactive chemicals against a particular molecular target or biological system, 

both computational methodologies have been merged into virtual screening strategies.  

 

Ligand-Based Virtual Screening (LBVS) is a molecular activity prediction technique that uses a set of known 

bioactive compounds as a basis for the analysis of intrinsic compound features, including electronic, topological, 

physicochemical, and structural traits (Berenger et al., 2017; Garcia-Hernandez et al., 2019). Examples of 

computational tools are machine learning, cheminformatics filters, pharmacophore modeling, similarity searches, 

and QSAR analysis. SBVS, on the other hand, starts with a bioreceptor's three-dimensional structure to investigate 

the interactions between ligands and their binding site. The effectiveness of this strategy depends on the ability to 

comprehend intermolecular interactions, binding site residue composition, ligand-binding affinity, and bioreceptor 

conformation (Maia et al., 2020). The strategies used by SBVS to maximize ligand binding within the structure 

of the bioreceptor include molecular docking, molecular dynamics simulations, and structure-based 

pharmacophore modeling (Wang et al., 2020). 

 

VS is highly knowledge-driven, relying on the quality and quantity of existing information about the system under 

investigation and its careful selection and preparation (Kirchweger & Rollinger, 2018). Limited access to 3D 

libraries of natural products (NPs) has restricted the number of virtual screening studies for bioactive NPs. Some 

notable studies include Liu and Zhou's identification of potential SARS-CoV protease inhibitors from marine and 

traditional Chinese medicine metabolites, Toney et al.'s discovery of the terpenoid alkaloid sabadinine as a 

potential anti-SARS agent, and Moro's identification of ellagic acid as a potent protein kinase CK2 inhibitor. 

Additionally, Zhao and Brinton's research on estrogen receptor-selective ligands highlighted the effectiveness of 

receptor-based molecular docking in identifying selective flavonoid compounds with high binding affinity 

(Rollinger et al., 2008). These examples underscore the importance and application of VS in advancing drug 

discovery, especially when leveraging high-quality data and sophisticated screening techniques. 
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Table 1: Computational Methods Applied in Virtual Screening Approaches (Santana et al., 2021) 

Computational 

Method 

Description Examples 

Cheminformatics 

Filters (Molecular 

Filters) 

Applies empirical chemical rules to predict 

pharmacokinetics and drug-likeness properties of 

compounds by evaluating physicochemical and 

structural properties. 

Lipinski's Rule of Five, 

Veber's Rule, Jeffrey's 

Filters 

Molecular 

Fingerprint-Based 

Methods 

Uses binary representations of chemical structures to 

quantitatively assess pairwise similarity of compounds. 

Enables efficient computational screening based on 

structural features and pharmacophore models. 

SMILES fingerprint 

(SMIfp), Structural 

Interaction Fingerprint 

(SIFt) 

Similarity and 

Distance Metrics 

Metrics are used to compare molecular fingerprints for 

similarity assessment. Includes Tanimoto, Dice, Cosine 

coefficients, and others. 

Tanimoto coefficient, Dice 

coefficient, Cosine 

similarity 

Ligand-Based and 

Structure-Based 

Pharmacophore 

Modeling 

Predicts biologically active compounds based on 

shared chemical features (ligand-based) or spatial 

arrangements within protein binding sites (structure-

based). 

LigandScout, Molecular 

Operating Environment 

(MOE), Pharmer 

3D Shape-Similarity 

Search Methods 

Searches for compounds with similar 3D molecular 

shapes are crucial for determining binding affinity and 

selectivity. 

SHAFTS, Shape-it, 

OptiPharm 

Machine Learning 

Algorithms 

Uses intelligent algorithms to predict pharmacokinetic 

properties, toxicity, molecular targets, and bioactivity 

of compounds based on training data. 

QSAR models, deep 

learning approaches 

 

Molecular Dynamics simulations 

Proteins and nucleic acids are two examples of biomacromolecules that have been extensively studied using 

molecular dynamics (MD) simulations. Recent developments have made it possible to study complete cells and 

run cellular-scale simulations to gain a deeper understanding of the basic molecular processes of life. It examines 

conformational shifts under various circumstances, drug-target interactions, and protein characteristics (Heidari 

et al., 2016b). In many biologically significant systems, molecular dynamics simulations can follow fast processes 

at atomic resolution in less than a millisecond (Borhani & Shaw, 2012). The dynamics and conformation of drug-

target complexes can be studied with the use of MD modelling. To simulate biological processes in a computer 

program, MD simulation is employed. It has transformed drug development and turned into a standard 

computational tool for CADD. It provides precise estimations of the kinetics and thermodynamics of drug-target 

interactions and binding. It accurately estimates the thermodynamics and kinetics of drug-target interactions and 

binding. New methods, software, and hardware have increased the use of MD simulation in CADD research and 

the biopharmaceutical industry (Singh, 2021).  

 

The molecular dynamics (MD) simulation workflow in drug discovery consists of a structured series of steps that 

accurately simulate molecular behaviour over time. The process starts with file format conversion to ensure 

compatibility with the simulation software. Next, a simulation box is built around the molecules of interest, 

followed by the addition of water molecules to simulate physiological conditions. The system is then neutralized 

to balance charges, and energy minimization is used to maintain the molecular arrangement. The heating and 

equilibration stages prepare the system for the final simulation phase of the production run. Following simulation, 

trajectory data is converted and analyzed to extract meaningful insights into molecular dynamics, assisting drug 

discovery efforts by elucidating interactions, stability, and other critical properties of compounds under 

investigation (Singh, 2021). 

 

MD simulations provide detailed dynamic structural insights into biomacromolecules and detailed energetic 

profiles of protein-ligand interactions. They have proven invaluable in exploring disease mechanisms arising from 

protein misfolding and in virtual screening and understanding drug resistance due to target mutations. These 

complex issues often defy resolution through experimental approaches alone. As computational capabilities 

advance and with ongoing enhancements in sampling techniques, precise force field models, and streamlined 

analytical tools, MD simulations are poised to expand their applications across diverse fields in the coming years 

(Liu et al., 2018). 
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AI plays an important role in advancing protein folding prediction from amino acid sequences, leveraging deep 

learning and MD simulations. These technologies enhance understanding by simulating molecular interactions 

and dynamics more accurately. AI has also proven invaluable in predicting protein and peptide binding affinities 

and conducting toxicity studies using SAR and toxicological datasets (Dhakal et al., 2022). Molecular dynamics 

simulation calculations can be accelerated using machine learning techniques. By training on extensive protein-

protein or protein-peptide datasets, AI models accurately forecast binding strengths, aiding in the selection or 

development of biologics with superior target affinity and specificity. In the context of SARS-CoV-2 research, 

high-throughput in silico methods, such as machine learning models, have been utilized to identify potential 

inhibitors of the virus's main protease from natural sources. For instance, the NuBBE database, which contains a 

diverse collection of natural compounds, was screened using AI models like Gradient Boosting Machine (GBM), 

Random Forest (RF), and Support Vector Machine (SVM). These models predicted numerous compounds with 

potential antiviral properties, and further molecular docking studies narrowed this down to specific flavonoids 

and lignoids with strong binding affinities. Subsequent MD simulations confirmed these compounds' stability and 

binding dynamics, revealing their mechanisms of action in inhibiting the main protease (Arifuzzaman et al., 2022). 

MD simulations enhance virtual screening by considering receptor flexibility, thereby improving the enrichment 

factor. Case studies include the use of MD simulations to optimize lead compounds and understand drug resistance 

mechanisms. For example, the interaction between hepatitis C virus proteins and inhibitors was studied to 

understand resistance due to mutations, guiding the development of more effective treatments (Liu et al., 2018).  

 

Integrating molecular dynamics (MD) simulations with AI techniques like deep learning (DL) has significantly 

improved the accuracy and efficiency of structure-based drug design (SBDD). For SARS-CoV-2 treatment 

discovery, DL-based MD simulations screen large compound libraries and predict their binding affinities and 

stabilities, rapidly identifying promising drug candidates and analyzing their interaction dynamics (Sun et al., 

2022). Researchers used a deep learning algorithm to screen 1611 natural compounds from the Selleck database, 

predicting 500 compounds with high binding affinity to the SARS-CoV-2 main protease (Mpro). Molecular 

docking and MD simulations refined these predictions, identifying Palmatine and Sauchinone as stable, non-toxic 

inhibitors with strong binding energies. These compounds showed promise as therapeutic agents against COVID-

19, highlighting the effectiveness of combining deep learning and MD simulations for accelerating natural 

product-based drug discovery (Joshi et al., 2020). 

 

Structure-Activity Relationship (QSAR) Modeling in Quantitative Terms  

Since AI has emerged, quantitative structure-activity relationship (QSAR) modeling, a method used in computer-

aided drug design for more than 60 years, has made tremendous strides (Tropsha et al., 2024). QSAR modelling 

is a key approach in cheminformatics that investigates how molecular features influence chemical, biological, and 

toxicological properties. It is commonly used for lead optimization in drug discovery research. QSAR modelling 

has expanded to include hit and lead discovery through virtual screening, drug-like property prediction, and 

chemical risk assessment. An improved model, development, validation protocols, and prioritizing external 

validation have enabled these advancements (Golbraikh et al., 2017). QSAR Modelling involves compiling and 

curating extensive datasets of natural compounds, calculating molecular descriptors, and applying machine 

learning algorithms to predict biological activities and toxicities. Modern QSAR models, enhanced by AI 

techniques such as deep learning, have proven effective in identifying promising drug leads with improved 

pharmacological profiles, as evidenced by numerous successful applications in designing better drugs from natural 

sources (Kar & Roy, 2012). 

 
Data preparation is the first step in QSAR modeling. A relevant chemical, biological, or toxicological target must 

be identified first. Next, a suitable dataset must be compiled, curated, and descriptors selected and calculated. 

Finally, an appropriate machine-learning computational procedure must be chosen. The dataset is split into 

external evaluation and modelling sets multiple times to ensure robust analysis. Then, during the QSAR model 

development phase, the modelling set is split multiple times into training and test sets (Wang et al., 2024). Models 

are built using the training sets and validated with the test sets. These steps are repeated for each pair of descriptor 

sets and computational procedures in combinatorial QSAR (combi-QSAR). Models that exhibit appropriate 

statistical performance are selected for external validation, and a Y-randomization test is carried out to prevent 

overfitting and chance correlations. Validation of QSAR models involves performing consensus predictions on 

the external evaluation set within the applicability domain (AD). Optimal Z-cutoffs are determined using criteria 

for the precision of consensus prediction and coverage. Finally, virtual screening of chemical databases is 

conducted by performing similarity searches using the training or modelling sets with the Z-cutoff. The remaining 

compounds are then subjected to consensus prediction using the QSAR models (Golbraikh et al., 2017).  
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The capacity of QSAR modelling to predict the biological activities of different compounds has been demonstrated 

by its effective use in the search for antioxidants and anticancer medicines. Mitra et al. created QSAR models for 

flavonoids and phenolic compounds from traditional Chinese medicinal herbs in order to better understand 

antioxidants. They identified important structural characteristics, such as the ideal quantity of hydroxyl and 

ketonic groups that improve antioxidant activity (Mitra et al., 2010). Salum et al. (2011) studied discodermolide 

analogues for anticancer medications using a fragment-based QSAR technique, identifying crucial structural 

fragments and molecular features necessary for strong anticancer efficacy. De-Eknamkul et al. (2012) explored 

the estrogenic activities of isoflavonoids and diphenolics, identifying significant structural elements that 

contribute to their potency against breast cancer cells. 

 

In order to address nonlinear relationships between chemical structures and their properties, QSAR first used 

simpler models like linear regression and k-nearest neighbours but has since moved to more sophisticated machine 

learning techniques, such as support vector machines (SVM) and gradient boosting methods (GBM) (Chen et al., 

2018). With the introduction of deep learning, QSAR modelling has undergone even more transformation. 

Automatic feature extraction is now possible, and graph and recurrent neural networks are used to create context-

specific representations of chemical structures. These models of deep learning, although sometimes criticized for 

their "black-box" nature and high computational cost, offer significant advantages in modelling complex 

molecular systems and multitask learning scenarios, which are crucial in the multiparameter optimization 

challenges of drug discovery (Soares et al., 2022). Recent advances in explainable AI and uncertainty estimation 

techniques are addressing the interpretability and reliability issues of deep learning models, making them more 

accessible and effective in predicting drug properties and interactions.  

 

AI Application in Antibiotic and Anticancer Research  

AI has shown great potential in the field of antibiotic and anticancer research, especially when combined with 

machine learning (ML) and deep learning (DL) approaches. AI-driven methods have expedited the development 

of antibiotics by making it easier to rationally design bioactive substances that work well in animal models (Melo 

et al., 2021). AI models have been used to predict binding site affinity more accurately than traditional methods, 

aiding in virtual screening processes. For example, deep learning methods have bypassed traditional docking and 

affinity estimation to identify small-molecule antibiotics active against multiple bacterial pathogens (Stokes et al., 

2020). The application of graph neural networks and recurrent neural networks for molecular representations has 

enabled the automatic extraction of meaningful features from molecular structures, further enhancing the ability 

of these models to predict. Moreover, the development of antimicrobial peptides (AMPs) through AI has been 

highlighted, with machine learning models predicting antimicrobial activity and guiding the design of new AMP 

sequences with significant activity improvements (Porto et al., 2018). 

 

ML goes beyond simple antimicrobial activity prediction to improve our comprehension of antibiotic therapeutic 

potential. Drug-likeness has been predicted more accurately and automatically over time, with an emphasis on 

important characteristics like toxicity, excretion, metabolism, distribution, and absorption (ADMET). 

Furthermore, ML can predict the adverse effects of antibiotics. This is demonstrated by its application in 

predicting the seizure-inducing potential of enoxacin, a broad-spectrum fluoroquinolone antibacterial (Gao et al., 

2017). Combining machine learning and Fourier-transform infrared spectroscopy, Da Cunha et al. were able to 

identify biochemical fingerprints and precisely anticipate the antibiotics' modes of action and efficacy (Cunha et 

al., 2021). Zoffman et al. (2019) used machine learning to analyze the Roche compound library, prioritizing novel 

compounds and identifying their antibacterial activity against Gram-negative bacteria. Stokes et al. (2020) used a 

deep-learning approach to identify potential antimicrobial molecules from the Drug Repurposing Hub. After 

training and optimizing the model, they identified 99 potential antimicrobial molecules, 51 showing strong 

inhibitory effects on E. coli. This led to the discovery of halicin, which demonstrated strong inhibitory effects 

against multiple antibiotic-resistant strains, including M. tuberculosis and carbapenem-resistant 

Enterobacteriaceae, by sequestering iron and disrupting bacterial metabolism (Stokes et al., 2020). 

 

Most ML models for NP activity prediction, particularly binary classification models, have emerged within the 

last 5-10 years. NPs are categorized as either active or inactive by these models. Using topological descriptors, an 

early linear discriminant analysis (LDA) model was able to find new anti-inflammatory nanoparticles (NPs) from 

MicroSource. Furthermore, among the 1194 marine and microbial NPs from the AntiMarin database, two random 

forest (RF) classifiers were created using CDK descriptors to find antibacterial and anticancer drugs. 5278 out of 

21,334 plant-derived nanoparticles (NPs) from Traditional Chinese Medicine (TCM) were predicted by Dai and 

colleagues to have anticancer capabilities in 2016 (Saldívar-González et al., 2022). Dai et al.'s (2016) work 

predicting anticancer properties for plant-derived NPs using their CDRUG web server and the iterative stochastic 

elimination (ISE) optimization introduced by Rayan et al. (2017) for discovering bioactive NPs with anticancer 
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and antibacterial activities. Additionally, the 2020 development of the first DL-driven multi-classification 

algorithm identified medicinal uses of NPs across various diseases (Yoo et al., 2020). 

Advances in AI biology analysis tools, like network-based and machine learning (ML)-based techniques, have 

made it possible for scientists to handle complicated biological data more efficiently. Gov et al. identified 

important biomarkers, including GATA2 and miR-124-3p, as possible treatment targets by reconstructing tissue-

specific networks for ovarian cancer using network-based biology techniques (Gov et al., 2017). AI techniques 

have combined genomes, proteomics, and metabolomics data with other multi-omics data to reveal the complex 

relationships that drive the development of cancer. Additionally, AI-driven models like graph convolutional 

networks and autoencoders have been employed to predict drug properties and identify druggable targets, 

enhancing the precision and efficiency of drug discovery (You et al., 2022). 

 

Peng et al. (2021) produced an innovative end-to-end learning framework called EEG-DTI, utilizing 

heterogeneous graph convolutional networks to predict drug-target interactions (DTIs). Remarkably, this model 

produced promising results even without relying on 3D structural data of drug targets. Madhukar et al. (2019) 

developed the BANDIT method that integrated six data types, achieving about 90% accuracy in target prediction 

for over 2000 small molecules. AI has been effectively applied in screening anticancer drug-hit compounds. High-

throughput screening techniques enhanced by AI have been used to identify molecules with initial activity against 

specific targets. For example, Yasuo et al. introduced SIEVE-Score, a structure-based virtual screening method 

that significantly improved the efficiency of identifying hit compounds compared to traditional methods (Yasuo 

& Sekijima, 2019). Similarly, Krasoulis et al. (2022) developed DENVIS, a scalable algorithm using graphical 

neural networks for high-throughput screening, which showed superior speed and accuracy. These instances 

highlight the transformative potential of AI in accelerating the discovery and optimization of anticancer drugs, 

offering more effective and precise therapeutic options. 

 

Challenges and Future Directions  

Since a substantial amount of data is needed to train the system in the future, its availability is critical to AI's 

effectiveness. Access to data from many database providers may incur additional costs for a company in order to 

ensure accurate result prediction. Furthermore, the information needs to be accurate and of high quality. Further 

barriers that prevent AI from being fully applied in the pharmaceutical industry include the lack of skilled 

personnel to manage AI-based platforms, financial limitations for smaller companies, worries that replacing 

humans will lead to job losses, skepticism about the data generated by AI, and the "black box" phenomenon (i.e., 

the method by which the AI platform draws its conclusions) (Lamberti, 2019). While some pharmaceutical 

companies have already implemented AI, it is projected that the pharmaceutical sector will earn US$2.199 billion 

in revenue by 2022 via AI-based solutions. Between 2013 and 2018, the pharmaceutical business invested over 

US$7.20 billion in over 300 transactions. Pharmaceutical businesses should be transparent about the practical 

goals that can be achieved and the potential of AI technology to solve problems once it is used. Software engineers 

and data scientists with a strong foundation in AI technology and a solid understanding of the company's R&D 

goals and commercial target can be generated in order to fully utilize the potential of the AI platform (Research 

& Markets, 2019). NP-based drug development could be revitalized in both established and emerging fields by 

the technology advancements mentioned above. As previously noted, NPs have long been the primary source of 

novel medications, particularly antibiotics, to treat infectious disorders. NPs have antimicrobial qualities identified 

by utilizing the advancements detailed in the preceding sections, including methods for finding new NPs by 

utilizing the human microbiome (Samuel & Ekpan, 2023). Using developments in total synthesis, semi-synthetic 

approaches, and biosynthetic engineering, researchers are not only searching for novel NP classes with 

antimicrobial properties but also working to develop and optimize existing NP classes. Additionally, antivirulence 

tactics may offer a different strategy for combating infections, and NPs that target bacterial quorum sensing may 

be useful in this regard (Atanasov et al., 2021; Merit et al., 2024). 

 

Ensuring high data quality is one of the main challenges to using AI for natural product-based medication 

development. The correctness and consistency of the data used to train machine learning (ML) and deep learning 

models determine their success to a considerable extent. Format, precision, and measurement standards of data 

from different sources might sometimes differ. Models with bias may result from incomplete datasets. Data gaps 

must be filled with the use of imputation techniques. To guarantee the predictive accuracy and generalizability of 

AI models used in drug discovery, validation is crucial. It is possible to detect overfitting or underfitting problems 

in a model by evaluating its performance on several data subsets using cross-validation techniques (Saldívar-

González et al., 2022). Regulatory challenges also exist for the integration of AI in drug research. Regulatory 

bodies must well understand the rationale behind AI model judgments. To address this, interpretable AI models 

must be created, and the model-building process must be thoroughly documented.  
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AI can be greatly improved when combined with other omics (genomics, proteomics, metabolomics, etc.) 

technologies. Understanding biological processes and medication interactions more thoroughly is made possible 

by this combination. Combining data from several omics’ levels can provide an integrated understanding of 

disease mechanisms and pharmacological activities. Building and evaluating biological networks, identifying 

important pathways, and forecasting the potential effects of changes in these pathways on illness and treatment 

results are all made possible with the use of artificial intelligence (Egwuatu et al., 2024; Paul et al., 2021; Ekpan 

et al., 2024).  

 

Conclusion 

Artificial intelligence (AI) has the potential to completely transform the field of drug development based on 

natural products. Drug discovery can now be conducted more precisely and efficiently thanks to AI approaches 

like machine learning (ML) and deep learning (DL), which have proven capable of processing massive datasets, 

predicting bioactivity, identifying protein targets, and optimizing extraction methods. Developing novel 

antibiotics and anticancer chemicals, optimizing already-existing therapeutic candidates, and forecasting drug 

toxicity and efficacy are successful AI uses in this field. Notwithstanding these developments, issues, including 

the requirement for carefully selected, high-quality datasets, workflow integration, and ethical and legal 

considerations, still exist. Researchers, technologists, and regulatory agencies must work together to explore 

further and collaborate to realize AI's potential in drug discovery fully. It is essential to focus on curating 

comprehensive and high-quality datasets and integrating multi-omics data, such as genomics, proteomics, and 

metabolomics, to achieve a more holistic understanding of biological systems. Developing accessible, open-

source databases would promote broader collaboration across the scientific community. In order to address the 

"black box" nature of AI models, researchers should prioritize creating interpretable models that provide clear 

explanations for their predictions, increasing both their reliability and acceptance by regulatory bodies. Future 

research should also emphasize the integration of AI-driven predictions with experimental validation, streamlining 

AI insights with in vitro and in vivo testing to accelerate clinical applications. 
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