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Abstract 

The Zika virus, characterized by its complex transmission dynamics, poses a significant public health challenge. 

This study presents a novel mathematical model employing Caputo fractional derivatives to capture the intricate 

dynamics of the transmission of Zika virus between human and vector populations. Whereas the vector population is 

split into susceptible, exposed, and infected groups, the human population is classified into susceptible, exposed, 

asymptomatic, symptomatic, and recovered people. Our model incorporates fractional-order dynamics to better 

account for memory effects and historical data, which are often overlooked in classical models. Positivity and 

boundedness analyses verify the validity of the model, guaranteeing that all state variables are bounded and non-

negative throughout time. Furthermore, the Banach contraction mapping theorem is used to prove the solution's 

existence and uniqueness. The next-generation matrix approach is used to obtain the fundamental reproduction 

number ( 0R ), which sheds light on the prerequisites for both disease persistence and outbreak. Numerical 

simulations illustrate the model's dynamics, revealing the impact of fractional orders on disease spread. Optimal 

control strategies, including vaccination, treatment, and environmental management, are integrated into the model to 

assess their effectiveness in mitigating the virus's transmission. The simulations demonstrate that optimal control 

measures significantly lower the number of infected individuals in both human as well as vector populations, 

although the complexities of vector management highlight the need for careful calibration of interventions. Our 

findings underscore the enhanced descriptive power of fractional-order models in capturing the real-world 

complexities of Zika virus transmission. This model offers a robust framework for public health officials to design 

and implement more effective control strategies, ultimately contributing to better management of Zika virus 

outbreaks and other vector-borne diseases. 
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 Introduction 

The Zika virus, a member of the Flaviviridae family mostly spread by Aedes mosquitoes, has become a major 

worldwide health issue because of its link to serious neurological problems and adverse pregnancy outcomes. This 

introduction aims to give a comprehensive overview of Zika virus, including information on its epidemiology, 

clinical signs and symptoms, complications, prevention strategies, and the World Health Organization’s (WHO) and 

other stakeholders’ continuing response activities. The Zika virus was first discovered in the Ugandan Zika forest in 

1947, but it was not well known until outbreaks in Micronesia in 2007 and French Polynesia in 2013–2014 brought 

it to the attention of the world. But it was the 2015 Zika outbreak in Brazil that caused the most alarm, especially 

since it was linked to a rise in cases of microcephaly in children whose mothers had contracted the virus while they 

were pregnant. Aedes mosquitoes are the principal vectors of the Zika virus, with Aedes aegypti serving as the 

primary vector for human transmission (De Araujo et al., 2022: Muso & Baud., 2019). Since these mosquitoes are 

usually active throughout the day, there is a higher chance of becoming exposed. Furthermore, during pregnancy, 

the Zika virus can also spread vertically from mother to foetus through intercourse, transfusions of blood, and 

potentially organ transplants (Griffin, 2012). The ability of Zika virus to be transmitted through multiple routes 

underscores the complexity of its control and prevention. Most individuals infected with Zika virus are 

asymptomatic, and those who develop symptoms typically experience mild and self-limiting illness, including rash, 
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fever, conjunctivitis, muscle and joint pain, malaise, and headache (Agusto et al., 2017; Andraud et al., 2012). The 

greatest worry, though, is that a pregnant woman may contract the Zika virus, which could result in serious prenatal 

defects like microcephaly and other neurological complications like adult Guillain-Barré syndrome. The World 

Health Organization (WHO) announced a Public Health Emergency of International Concern (PHEIC) in February 

2016 in response to the Zika virus's growing threat. This declaration underscored the urgent need for concerted 

global effort to address the propagation of Zika virus and its associated complications (Gonzlez-Parra et al., 2020). 

While the PHEIC was lifted in November of the same year, the ongoing transmission of Zika virus in various 

regions, particularly in the Americas, underscores the continued importance of vigilance and response efforts. 

 

Efforts to combat Zika virus are multifaceted and encompass both prevention and control strategies. Key among 

these is vector control, which aims to lower the amount of mosquitoes and reduce human-mosquito interaction. This 

involves measures including removing mosquito breeding grounds, applying insecticides, and putting in place 

neighbourhood-based mosquito control programs. Insect repellents, long sleeves and sleeping under mosquito nets 

are examples of private safety measures that are crucial in preventing mosquito bites and reducing the risk of Zika 

virus transmission (Hayes, 2009; Grifin, 2012). In light of the possibility of sexual transmission of the Zika virus, 

especially between expectant mothers and their partners, sexual health education and counselling are essential 

components of prevention efforts. Recommendations include practising safer sex or abstinence, especially for those 

who reside in or return from places where the Zika virus is currently transmitted. Pregnant women are advised to 

seek medical attention for testing and counselling, while those planning pregnancy are encouraged to consider the 

risks associated with the Zika virus and take appropriate precautions (Idowu & Loyinmi., 2023; Khan et al., 2019). 

In addition to prevention, efforts to improve diagnostic capabilities and clinical management are essential for 

addressing Zika virus infections effectively. Laboratory confirmation of Zika virus infection is necessary due to the 

overlap in symptoms with other arboviral diseases, such as dengue and chikungunya. However, access to reliable 

diagnostic tests remains limited in many regions, highlighting the need for increased investment in diagnostic 

infrastructure and capacity building (Loyinmi et al., 2024; Loyinmi et al., 2021). Despite advances in understanding 

the Zika virus, no vaccine or targeted antiviral therapy is presently available to treat Zika virus infection. Research 

efforts are ongoing to develop vaccines and therapeutics, but significant challenges remain, including the complex 

nature of the virus and the limited understanding of its pathogenesis. 

 

The World Health Organization (WHO) has been at the forefront of organizing international efforts to prevent, 

detect, and contain epidemics in response to the Zika virus threat. This includes supporting countries in surveillance, 

laboratory testing, vector control, and clinical management. WHO has also issued guidelines and recommendations 

for the prevention and control of the Zika virus, aimed at guiding national and international response efforts. The 

Zika virus poses a complicated and dynamic public health threat that has consequences for the security of global 

health and while progress has been made in understanding the virus and implementing control measures, continued 

vigilance and investment are essential to prevent future outbreaks and mitigate the impact of Zika virus on 

vulnerable populations. By addressing the multifaceted aspects of Zika virus transmission, clinical management, and 

prevention, stakeholders may collaborate to mitigate the impact of this emerging infectious disease and safeguard 

the health and welfare of people across the globe. 

 

Efforts to develop a Zika virus vaccine have led to several promising approaches. One pioneering effort by the 

National Institute of Allergy and Infectious Diseases’ (NIAID) Vaccine Research Center (VRC) involves a DNA-

based vaccine. This vaccine, similar to one developed for West Nile virus, uses a DNA segment to induce an 

immune response. Initial Phase 1 trials began in August 2016, with an optimized version tested later that year. These 

trials showed that the vaccine induced a neutralizing antibody response and was safe. A Phase 2 trial, VRC 705, 

started in March 2017 to further assess safety, immunogenicity, and efficacy in preventing Zika infection (Yun & 

Lee., 2017). Another promising approach is the purified inactivated Zika vaccine (ZPIV) developed by the Walter 

Reed Army Institute of Research (WRAIR), which builds on strategies used for Japanese Encephalitis and dengue 

vaccines (Loyinmi & Gbodogbe, 2024; Sikka et al., 2016). Phase 1 trials at multiple sites confirmed its safety and 

immunogenicity. NIAID's Laboratory of Viral Diseases developed an investigational live attenuated vaccine, 

rZIKV/D4Δ30-713, combining dengue and Zika virus genetic material. This candidate entered Phase 1 trials in 

August 2018 and could potentially be combined with a dengue vaccine. Additionally, mRNA vaccines, being 

evaluated in collaboration with GlaxoSmithKline and Moderna, offer rapid development and scalability. The 

investigational AGS-v vaccine targets mosquito saliva proteins to prevent multiple mosquito-borne diseases. Lastly, 
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a vaccine using vesicular stomatitis virus (VSV), successful in Ebola vaccines, is in the early development stages for 

Zika. 

 

Controlling the spread of Zika Virus (ZIKV) primarily hinges on managing the Aedes mosquito population, as these 

mosquitoes are the primary vectors for transmission (Tesla et al., 2018; Padmanabhan et al., 2017). High-density 

human populations, lack of immunity, virus mutations, and global warming all contribute to the propagation of 

ZIKV. Despite various transmission modes, prioritizing mosquito control is crucial. Effective measures include 

mechanical, biological, and chemical strategies to prevent mosquito breeding and reduce their population. Chemical 

control, while effective, poses risks such as resistance and bioaccumulation, prompting a shift toward biopesticides 

(Duffy et al., 2009; Bearcroft, 1956). Plant extracts and essential oils have shown promise in mosquito control. 

Additionally, bacteria like Wolbachia pipientis can disrupt mosquito reproduction and reduce virus transmission. 

Genetic engineering techniques, such as using siRNA to induce male sterility, offer another avenue for control. 

Fungi and fish are also explored for their potential to control mosquito populations, though further research is 

needed to ensure their viability and ecological safety. Given the absence of a commercial ZIKV vaccine, significant 

advancements are being made in vaccine development. Several candidates are in the preclinical and clinical phases, 

with transmission-blocking vaccines (TBVs) showing great promise (Loyinmi & Gbodogbe., 2024). These vaccines 

prevent the spread of the virus from infected to naive individuals, potentially benefiting entire communities. 

Utilizing fields like immune profiling, bioinformatics, and reverse immunology could accelerate the development of 

effective and cost-efficient ZIKV vaccines (Idowu & Loyinmi., 2023; Khan & Atangana., 2020; Agbomola & 

Loyinmi., 2022). Public education on mosquito-repelling herbal products, which are safe for all individuals 

including pregnant women, is vital. Protecting health workers and ensuring safe blood and organ donations are also 

critical (Krauer et al., 2017; Mehrjardi, 2017). Globalization and climate change have exacerbated the spread of 

ZIKV, necessitating infrastructure improvements and effective public health strategies. Understanding all 

transmission modes, educating pregnant women on travel risks, and enhancing epidemiological data are essential for 

comprehensive control efforts. International cooperation and data sharing on mosquito control are crucial for global 

ZIKV management, alongside rapid vaccine development to bring effective solutions to market. 

 

Researchers across various scientific and engineering disciplines have recently shown a growing interest in utilizing 

fractional differential equations for mathematical modelling, particularly in epidemiology (Loyinmi & Ijaola., 2024; 

Khan & Atangana., 2020; Rezapour et al., 2020). Fractional-order models offer unique advantages over classical 

differential equations, mainly due to their ability to incorporate memory effects, a characteristic absent in classical 

models. This property stems from the inherent features of fractional differential equations, which account for the 

historical behaviour of a system, providing a more comprehensive understanding of dynamic processes. Fractional 

differential equations have been increasingly employed to model both infectious and non-infectious diseases 

(Loyinmi et al., 2024; Banuelos et al., 2019). One prominent example is the extensive research on Zika virus, where 

fractional models have yielded significant insights. Studies using fractional-order models based on the Caputo 

derivative have effectively captured the complex dynamics of Zika virus transmission and control measures. 

Similarly, tuberculosis has been studied using fractional-order models that consider endogenous reactivation and 

exogenous reinfections, providing a nuanced understanding of disease progression and recurrence. In the context of 

HIV/AIDS, researchers have developed fractional-order epidemic models incorporating the Mittag-Leffler kernel. 

This approach has facilitated the analysis of the disease's spread and the impact of various intervention strategies. 

The flexibility and adaptability of fractional-order models have also been demonstrated in studies of other diseases, 

showcasing their broad applicability and effectiveness. Contrastingly, classical differential equations, which rely on 

integer-order derivatives, lack the ability to capture the memory and hereditary properties of complex systems. 

While classical models have been instrumental in advancing epidemiological studies, they often fall short of 

accurately representing the long-term dependencies and non-local behaviours observed in real-world scenarios 

(Alfwan et al., 2023; Kibona & Yang., 2017). Fractional-order models bridge this gap by offering a more detailed 

and accurate depiction of disease dynamics, accounting for past states and interactions over time. The increasing 

application of fractional differential equations in epidemiology highlights their potential to enhance our 

understanding of disease mechanisms and improve the effectiveness of control and prevention strategies. By 

integrating memory effects and historical data, fractional-order models provide a powerful tool for researchers and 

public health officials to address current and future challenges in disease modelling and management. 

 

Our central aim is to delve into the intricate dynamics, efficacy of control strategies, and computational estimations 

inherent in the fractional-order Zika virus model under scrutiny. Our inquiry begins by scrutinizing the model's 
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positivity and constraining attributes through conventional mathematical analysis techniques. Following this, we 

ascertain the fundamental reproduction number utilizing the next-generation matrix approach and assess the model's 

asymptotic stability. Furthermore, employing an adaptive predictor-corrector algorithm alongside the fourth-order 

Runge–Kutta (RK4) method, we conduct comprehensive numerical simulations, thereby validating the theoretical 

insights across a broad spectrum of scenarios. This multifaceted approach ensures a robust examination of the 

model's behaviour and underpins our understanding through rigorous computational analysis. 

 

The theory of fractional calculus 

In this section, we shall acquaint ourselves with the fundamental concepts and nomenclature of fractional calculus 

theory, primed for its application in scrutinizing the infectious disease model at hand. Furthermore, its multifarious 

utility spans a spectrum of scientific domains. 

 

Definition 1. The fractional integral of Riemann-Liouville order  with respect to a function f , denoted as

→+:f , is defined as: 
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Definition 3. The Laplace transform of the Caputo derivative can be represented as:   
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Definition 4. The Mittage-Liffler function ( )+ ,E can be expressed as  
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Where the two-parameter Mittage–Leffler function is ( )tE  ,
, with 0,  . 

General Mean Value Theorem: Let  cabtg ,)(  and  cabgDb

a ,)( 
  for .10    

Then )(tg  is: 

( )
( )

 


atgDagtg b

a −
+

+= ).(
1

1
)()( where  a , ( ],ca . 

(6) 

Also, if ( )cagDb

a ,,0)( 000
 

 , then  neighborhood N  of 
0 , such that  



 
A Fractional-Order Model for Zika Virus Transmission Dynamics: Analysis, Control Strategies, and Simulation Insights 

88 Cite this article as: 
Loyinmi, A. C. (2024). A fractional-order model for zika virus transmission dynamics: analysis, control strategies, and simulation 

insights, FNAS Journal of Scientific Innovations, 6(1), 84-108. 
 

.),()( Ntagtg  Otherwise if ( )cagDb

a ,,0)( 000
 

 , then  neighborhood N  of 
0 , such that 

.),()( Ntagtg   

 

 

 

Model description and formulation 

The Zika virus exhibits distinctive transmission dynamics, characterized by a comprehensive population structure 

that is segmented into two separate cohorts: one dedicated to humans (Np), another to vectors population (Nv). The 

human population is further divided based on individuals' infection status, including those vulnerable to the Zika 

Virus (Sp), exposed individuals (Ep), exposed individuals that are not showing clinical symptoms (Iap), exposed 

individuals with clinical symptoms (Isp), symptomatic individuals undergoing treatment and those who have 

successfully recovered (Rp) from the infection. The vector population is similarly classified into three categories: 

vector susceptible to the zika virus (Sp) who have not been infected yet, exposed vector (Ev), and infected vector 

(Iv) carrying the Zika virus. The flow chart of this model is illustrated in Error! Reference source not found.: 

The force of infection for both human and vector populations are given as follows: 

( ) pvAPspp SIII 321 


++=  

( ) vAPspv SII 54 


+=  

Table 1 provides detailed descriptions of the parameters governing transitions between these compartments within 

the model, elucidating the Zika Virus transmission dynamics as well as the impact of interventions. 

 
Figure 1. Diagram of the Zika Virus Model 

 

The equation governing the Zika virus model of Caputo fractional derivatives can be expressed as follows: 
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Where, ( ) pvAPspp SIII 321 


++=  and ( ) vAPspv SII 54 


+= ,  

And the initial condition is given has 

 )0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0( vVvPSPSPAppp IESRTIIES   

 

Table 1. Variables of the Model 

Variables Description Values  References 

p  Birth rate in the human susceptible class 300 Estimate 

p  Mortality rate of human population 0.00019204 Padmanabhan et al, 2017 

a  Proportion of exposed humans who are 

symptomatic 

 0.18 Duffy et al, 2009 

b  Proportion of asymptomatic humans who are 

symptomatic 

0.5 Estimated 

  Latency period of the virus in humans 0.2 Bearcroft 1956 

  Transition rate of asymptomatic to symptomatic 0.2 Padmanabhan et al, 2017 

  The transition rate of symptomatic humans to 

treated compartments 

0.9 Assumed 

p  Zika virus-induced rate 0.00071429 Assumed 

  Recovered rate of treated individual 0.05 Estimated 

v  Recruitment rate of vectors 0.04 Banuelos et al, 2019 

v  Vector’s lifespan 0.04 Griffin 2012 

  Latency period of Zika virus in vectors 0.1 Andraud et al, 2012 

1  Symptomatic human-to-susceptible human contact 

rate 

0.1 Banuelos et al, 2019 

2  Asymptomatic human to susceptible human contact 

rate 

0.0992 Banuelos et al, 2019 

3  Vector to human contact rate 0.4 Banuelos et al, 2019 

4  Symptomatic human-to-vector contact rate 0.5 Banuelos et al, 2019 

5  Asymptomatic human-to-vector contact rate 0.5 Banuelos et al. 2019 
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Analysis of the fractional model 

Positivity of Solution 

Given that the fractional model (7) observes the human and vector population, it is imperative to demonstrate that all 

state variables remain positive throughout 0t . 

 

Theorem 1 

Consider the initial 

  DIESRTIIES vVvPSPSPAppp )0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  .  

The solution domain },,,,,,,,{ vVvPSPSPAppp IESRTIIES  of the fractional model exhibits positivity across all 

parameters within the invariant region
9
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Recall equations 7 
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The solution of the model (7) along one state axis, where other state variables vanish, gives 
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(8) 

Following the same procedures done for the boundedness of the solution, the solution for the above 

equations is given as, 

  

 

(9) 
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The solutions pertaining to the different compartments exhibit non-negativity. In light of the insights derived from 

Equations (9), it can be deduced that the ensemble remains positively invariant with respect to temporal progression 

(t). 

Also, in the vVPSPSPApp IERTIIE −−−−−−  plane, the trajectory solution of the developed fractional model 

(7) is positive, having 0*t , such that.  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0*,0*,0*

,*,0*,0*,0*,0*,0*

=

=

tItEtS

tRtTtItItEtS

vVv

PSPSPAppp
 

 and ( ) ( )*tStS pp  , ( ) ( )*tStS vv   

On plane 

( ) ,| *0


 pttp

c tSD ==
 and ( ) ,| *0


 vttv

c tSD ==
 (10) 

Now, we apply Caputo fractional derivative mean value theorem, and we have 

( ) ( )
( )

( )( )  )ttttttDtStS c

pp *,',*'.
1

* 0 −


=− 



 

( ) ( )
( )

( )( )  )ttttttDtStS c

vv *,',*'.
1

* 0 −


=− 



 

 

(11) 

Finally, we have ( ) ( )*tStS pp  , ( ) ( )*tStS vv   and this contradicts our assumption earlier for 0*t . So, the 

susceptible classes ( )tS p
 and ( )tS v  are nonnegative for all time t. Hence, the solution of the fractional derivative is 

positive for all time t.  

 

2.3.3. Boundedness of the solution 

From (7), the total population size is  

vVvv

PSPSPApppp

IESN

RTIIESN

++=

+++++= ,
 

And the differential equation involving fractional derivatives for the population is given by:  
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By incorporating the fractional model system of equations delineating human population dynamics from equation 

(7) into the preceding expression and meticulously executing the elimination procedure, a profound outcome ensues. 

NND

INND

vvv

c

SPpppp

c













−=

−−=

0

0

 

(12) 

Theorem 2 

The solution of the fractional model (7) is feasible at 0t  if they enter the region
9},,,,,,,,{ RIESRTIIESD vVvPSPSPAppp = . 

 

 

Proof 

Demonstrating the constrained nature of the human population's solution, we revisit equation (9) and employ the 

Laplace transform on both sides of the equation. 

SPpppp

c INND


  −−=0
  

at disease-free, we have the equation to be 

NND ppp

c 
 −=0

 (13) 

Re-arrange the equation above we have, 

 


  ppp

c NND =+0
 

Utilizing the Laplace transformation methodology, we observe 

 ( )  ( )  ( )SLSNLSNDL ppp

c 
  =+0

 

(14) 

Following equation (3), the Laplace transform for the Caputo fractional derivate for the above equation is given as 

( )
S

NSS
p

p

n
m

n

n



 


=+−
−

=

−− 0
1

0

1
   where  ( ) ( )  == SSNL  

For 10,0 = m , the equation becomes 
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S

NSS
p

p

n

n

n



 


=+−
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−− 0
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1
 

Now, applying summation property, we have 

( )
S

NSS
p

p

n



 


=+− − 01  

(15) 

Then, making  the subject of the above equation, we have 

( )0
11

N
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p
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








+
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+


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−−

 

(16) 

Utilizing the inverse Laplace transformation on both sides of the aforementioned equation yields the following 

outcome. 

  ( )
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
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
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p
S

S
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S

S
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1
1

1
11 0   

(17) 

Applying the inverse Laplace transform and Mittage-Liffler function as in equation (5), we have 
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Now, we apply definition 2.4, The Mittage-Liffler function as in equation (4), we have 
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(19) 

By simplification, we have 

 ( ) ( ) ( )















tENtN p

pp

p
−














−+


 1,0  

Finally,  
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t
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
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(20) 

Similarly, demonstrating the constrained nature of the vector population's solution, we revisit equation (9) and 

follow the same procedure. So, we have for the vector population; 

( )




v

v

t
tNiml




→
 

Existence and Uniqueness of the system  

Prior to affirming the presence and singular efficacy of the Zıka Vırus remedy, it is imperative to initially delineate 

the core functions as per the fractional derivative model (7), thereby establishing the fundamental basis for our 

demonstration. 
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(21) 

Also, Let ( ) ( )TvVvPSPSPAppp IESRTIIEStY ,,,,,,,,=  

and ( )( ) ( ) .9,8,7,6,5,4,3,2,1,, == itYtV
T

i  

So, we can write the model (7) as follows: 

( ) ( )( ) ( )   .10,,0,00,, 00 == 
 btYYtYttYDc

 (22) 

In the given expression, condition 00 L  should be considered separately for each component. Problem (22), 

which is equivalent to model (7), can be defined by integrating the following: 

( )
( ) ( )( ) .,

1
)(
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1

0 dbbYbbYtY −
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+= 
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
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
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Subsequently, we will examine model (7) using the integral representation provided earlier. In this scenario, let's 

 ( )= ;,0  C represent the Banach space comprising all continuous functions that are mapping from the interval

( ),0 to , equipped with the norm. 

  ( ) ,sup ,0 tYL at=


 (24) 

and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tItEtStRtTtItItEtStL vVvPSPSPAppp ++++++++=  

Where vVvPSPSPAppp IESRTIIES ,,,,,,,, all belong to  ( );,0 C . 

Also, the operator  →:L  is defined by 
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(25) 

Therefore, the operator Y  is properly defined owing to the evident continuity ofV . 

Theorem 3. Let ,,,,,,,,,
____________

T
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
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Let  
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can be reduced to 
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Where  .,,max ,3211

 pnnnm =  
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Similarly, the rest can be demonstrated in a comparable manner. As a result, we can infer that 
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Theorem 4: If the condition 
( )1+


=





p
is satisfied by the preceding theorem, and condition 1 im  holds, 

then there exists a sole solution to model (7) on domain ( )

p,0  that maintains uniform Lyapunov stability. 

 

Proof: The function   66,0 ++ →


p
is evidently continuous within its specified domain. Consequently, we 

demonstrate the existence of the solution. 

To establish uniqueness, we employ the Banach contraction mapping theorem on the operator Y  defined earlier. 

Subsequently, we demonstrate that Y  functions as both a self-map and a contraction.  

By definition,   ( ) 
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Consequently, it is observed that operators 
lHYL   and Y  exhibit characteristics of self-maps within the context. 

Subsequently, we establish the contraction property of operator Y . Assuming operators L  and 
__

L  conform to the 

abbreviated dynamical system, the application of the aforementioned theorem result yields the following. 
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(32) 

Therefore, if 1 lm thenY  acts as a contraction mapping. According to the Banach contraction mapping 

principle, Y  possesses a unique fixed point on  

p,0 , serving as a solution to model (7). Additionally, the 

uniform Lyapunov stability of the solutions ensues. 

Basic Reproduction Number 

We derive the fundamental reproductive rate of model (7) employing the methodology introduced by Diekmann and 

Heesterbeek, known as the next-generation matrix approach in epidemiological analysis. By applying this technique,

)( 1−= UVR f  , the expressions for the novel infection components, denoted as U , and the transition 

components, denoted as V , within model (7) are deduced. 
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And   
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So for
1−UV , we have the fundamental reproductive rate corresponds to the spectral radius of the matrix 

representing the propagation of infections to subsequent generations. Thus, from above, we obtain the expression for
fR , where 

f

HR represent the reproduction for the human population and 
f

VR denote the reproduction ration for 

the vector population. 
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Analysis of the fractional model 

Disease-Free Equilibrium (DFE) 

The state of disease absence, ( )f

DE , denoted as the disease-free equilibrium within the fractional model (7), signifies 

a stable condition wherein the disease undergoes eradication. Through the establishment of steady-state conditions 

by equating the pertinent variables associated with the disease to zero, model (7) generates the subsequent 

manifestation for the disease-free equilibrium. 
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(39) 

Now, by setting the state variables associated with the disease to zero and solving, we obtain the following: 
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(40) 

Furthermore, at the point where ,,,,,, VPSPSPApp ERTIIE and vI vanish, we derive:  
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v
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(41) 

Therefore, the determination of the equilibrium devoid of disease within the fractional model necessitates the 

utilization of basic mathematical computations, as delineated subsequently: 
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Stability Analysis of the DFE 

Theorem 4: The state of disease absence within the system 
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exhibits asymptotic stability when all eigenvalues of the Jacobian matrix associated with the system's dynamics are 

characterized by negativity. 

Proof: 

In order to substantiate the aforementioned theorem, we undertake the computation of the Jacobian Matrix 

pertaining to system (7) at the Disease-Free Equilibrium (DFE) point, 
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followed by the assessment of the system's eigenvalues. 

The Jacobian Matrix ( )vVvPSPSPAppp IESRTIIESJ ,,,,,,,, of the system at DFE, is given as:  
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In the process of computing eigenvalues, we adhere to the following steps: 

(42) 
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(43) 

Clearly, the diagonal entries in the provided matrix represent the eigenvalues of matrix J. It is evident that these 

eigenvalues are purely real and devoid of any imaginary components. The importance lies in the signs of these 

eigenvalues, which are essential for evaluating the stability of the Disease-Free Equilibrium (DFE). In this specific 

context, all eigenvalues demonstrate negative real parts, confirming the local asymptotic stability of the rotavirus at 

the DFE. 

 

Infection Persistence Equilibrium 

Theorem 6. 

In the fractional derivative model (7), the existence of the endemic equilibrium denotes a condition wherein diseases 

endure within the population. Accordingly, the formulation for the endemic equilibrium can be delineated as 

follows: 
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Additionally, by employing a numerical simulation methodology, we attain the endemic equilibrium through a 

specified problem-solving strategy. 

 

Fractional optimal control strategies 

Here are pivotal elements of fractional optimal control for Zika Virus: we alleviate the transmission rate of the 

human compartments through ( )11 k− , where 
1k symbolizes individual vaccination, 

2k  represents the effort of 

treatment of symptomatic individuals. Also, we alleviate the transmission rate of the vector population through

( )31 k− , where 3k  symbolizes environmental management (source reduction, water management and urban 

planning). Based on these premises, the ensuing collection of novel Caputo fractional derivatives equations is 

formulated: 

( ).,,,,,,,,
*********

vVvPSPSPApppf IESRTIIESE =

*********
,,,,,,,, vVvPSPSPAppp IESRTIIES
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(51) 

 

Analysis of the Model Integrating Preventive Interventions 

In this section, a framework has been developed that integrate a precise functional, emphasizing its controllability 

via the implementation of Pontryagin's Maximum Principle. Focusing on the fractional optimal setup outlined in 

equation system (51), emphasis has been placed on a significant control challenge, elucidated prior to engaging in 

thorough global optimization. The intricate task of selecting the most effective strategies is encapsulated by the 

functional objective denoted as H. The overarching predetermined objective involves diminishing the population 

across all categories, all within a specified timeframe [0, T]. 

Let ( ) NkkkN = 321 ,, be Lebesgue measurable on  1,0 ,  
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The concluding time point is denoted by the parameter T  with coefficients aligning with the weight constants 

attributed to the virus across distinct groups. The focal point in this segment is the reduction of operational costs, as 

outlined in equation (54). Additionally, our exploration extends to include an examination of the social expenses 

,, 2

22

2

11 kYkY and 
2

33kY  linked to the described scenario. 
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To achieve the goal of tackling the control issue, our effort is focused on pinpointing ( ) ( ) ( )( ),,,
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Existence of an Optimal Control Solution 

Theorem: Considering equation (51), let ( )kG  be the optimal control subject to (55), with the initial condition at 

t=0. The optimal control is given by: ( ) ( ) ( )( ),,,
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Proof: The convex nature of the integrand regarding the control measures G ensures the presence   of an optimal 

solution for control.  

Following this, it is crucial to delineate the most effective resolution. The Lagrangian is articulated in the subsequent 

manner:  
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The Hamiltonian function is given as;  
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and 

( )( )( )
( )( ) ( )( )
( ) ( )( )

( )
( )

( )

( )( )( )
( )( ) ( )
























−=

+−+−=

++−−=

−+−=

+−=

++−+=

++−−−=

++−−++−=

+++−−=

vvvvt

c

vvvAPspvt

c

VvAPspvvt

c

PpSPAPPt

c

SPpSPSPt

c

SPppAPpSPt

c

APppAPt

c

pppvAPsppt

c

ppvAPspppt

c

IEID

ESIIkED

SIIkSD

RTIbRD

TIkTD

IkIbEaID

IbbEaID

EaaSIIIkED

SIIIkSD





































0

5430

5430

0

20

20

0

32110

32110

1

1

1

11

11

1

 

 

 

 

 

 

(58) 

Provided  vVvPSPSPApppi IESRTIIESi ,,,,,,,,,   are discrete and mutually exclusive variables.  

We are ready to apply the fundamental prerequisites to the Hamiltonian ( GH ) for examination. To uncover the 

adjunct equation and satisfy the transversality condition, we utilize the Hamiltonian. Through the application of 

differential processes, we ascertain the values linked to the variables vVvPSPSPAppp IESRTIIES ,,,,,,,,

concerning the Hamiltonian. This culminates in the derivation of the adjunct equation, articulated as follows: 
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Given the transversality conditions, we have: 

 vVvPSPSPApppi IESRTIIESi ,,,,,,,,,  . 

In the effort to minimize the Hamiltonian, represented as HG, concerning the optimal control variables, we 

commence the differentiation process in relation to ,, 21 kk and 3k . This process yields a series of mathematical 

expressions, subsequently equated to zero to ascertain the optimal configuration of controls. This approach 

ultimately leads to the derivation of the desired optimal control solution. 

Taking (57), thus we have 
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We proceed with the process of obtaining the optimal control solution: 
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Incorporating the boundary parameters, the solution is articulated as follows: 
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Proved.Numerical simulation 

This section offers numerical simulations designed to elucidate the dynamic characteristics of the Caputo fractional-

order deterministic nonlinear mathematical model concerning Zika Virus. Utilizing MATLAB software and 

parameter values outlined in Tables 1, the simulations were executed. We choose the initial population to be Sp(0) = 

300, Ep(0) = 0, Iap(0)=1, Isp(0)=1, Tsp(0) = 0, Rp(0) = 0, Sv(0) = 300, Ev(0) = 0, Iv(0) = 1. 

 Figures 2 through 9 present dynamic models for individual compartments, showcasing fractional variations, while 

Figures 10 through 15 demonstrate the influence of optimal control measures on human compartments. 

Additionally, Figures 16 through 18 showcase the effect of optimal control on vector compartments. 

 

 
Figure 2: Simulation of Human Susceptible Class with 

fractional variations 

 
Figure 3: Simulation of Human Exposed Class with 

fractional variations 
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Figure 4: Simulation of Human Asymptomatic Class 

with fractional variations 

 
Figure 5: Simulation of Human Symptomatic Class 

with fractional variations 

 
Figure 6: Simulation of Human Treatment Class with 

fractional variations 

 
Figure 7: Simulation of Vector Susceptible Population 

with fractional variations 

 
Figure 8: Simulation of Vector Exposed Population 

with fractional variations 

 
Figure 9: Simulation of Vector Infected Population with 

fractional variations 

 
Figure 10: The optimal control on human susceptible 

population  

 

 
Figure 11:The optimal control on human exposed 

population 
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Figure 12: The optimal control on human asymptomatic 

population 

 
Figure 13: The optimal control on human symptomatic 

population 

 
Figure 14: The optimal control on human treatment 

class 

 
Figure 15: The optimal control on human recovered 

class 

 
Figure 16: The optimal control on vector susceptible 

population 

 

 
Figure 17: The optimal control on vector exposed 

population 

 
Figure 18: The optimal control on vector infected 

population

 

 

Discussion  

Figures 2 through 9 provide a comprehensive visual representation of the dynamic intricacies inherent in Fractional 

Ordinary Derivative Equations (FODEs), showcasing their heightened efficacy as descriptors for biological systems 
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when compared to conventional integer-order models. Significantly, the depicted solutions of the model, governed 

by the continuous evolution of the time-fractional derivative, consistently demonstrate convergence towards 

equilibrium points. 

 

Figure 10 illustrates the impact of optimal control measures on the human susceptible population in the context of 

Zika virus transmission. The graph shows that as the optimal control measures increase—specifically, through 

individual vaccination, treatment of symptomatic individuals, and environmental management—the number of 

susceptible individuals in the human population also increases. This trend indicates that effective control strategies 

successfully reduce the transmission rates, thereby preventing more people from becoming infected. Consequently, a 

higher proportion of the population remains susceptible but uninfected, highlighting the effectiveness of these 

combined interventions in managing the spread of the virus. Figure 11 illustrates the effect of optimal control on the 

human exposed population. Initially, as the optimal control measures are increased, there is a rise in the exposed 

human population for approximately three weeks. This initial increase can be attributed to the lag in the impact of 

control measures such as vaccination and treatment. However, beyond this period, the exposed population begins to 

decline as the effectiveness of these interventions becomes more pronounced. The subsequent reduction in the 

exposed population underscores the importance of sustained and intensified control efforts over time to mitigate the 

spread of the Zika virus. Figure 12 illustrates the impact of optimal control measures on the human asymptomatic 

population in the context of Zika virus transmission. As the level of optimal control increases, the size of the 

asymptomatic human population decreases significantly. This trend suggests that effective implementation of 

control strategies such as vaccination and treatment efforts can substantially reduce the spread of the virus by 

lowering the number of asymptomatic carriers who might unknowingly contribute to transmission. The figure 

underscores the importance of robust public health interventions in managing and mitigating the impact of Zika 

virus outbreaks. Figure 13 demonstrates the impact of optimal control strategies on the human symptomatic 

population of Zika Virus. As the optimal control, represented by the combined efforts of individual vaccination, 

treatment of symptomatic individuals, and environmental management, increases, the number of symptomatic 

individuals decreases. This indicates that higher levels of control measures effectively reduce the spread and impact 

of the Zika virus among humans. Specifically, the treatment of symptomatic individuals plays a crucial role in 

reducing the number of symptomatic cases, highlighting the importance of robust healthcare responses alongside 

preventive measures. Figure 14 depicts the relationship between the optimal control of human and the size of the 

treated human population. As the optimal control increases, indicating a higher effort in treating symptomatic 

individuals, it's observed that the treated human population decreases. This seemingly counterintuitive trend could 

suggest that the treatment efforts are effective in reducing the number of symptomatic cases over time, hence 

reducing the pool of individuals needing treatment. It underscores the potential effectiveness of intervention 

strategies in controlling the spread and impact of Zika virus through targeted human treatment. Figure 15 illustrates 

the impact of optimal control measures on the human recovered population in the context of Zika virus transmission 

dynamics. As the optimal control increases, indicating intensified efforts such as vaccination and treatment, the 

graph shows a decrease in the number of recovered individuals. This trend shows that while the control measures 

effectively reduce transmission and thus the number of infected individuals, they also influence the recovery rate, 

possibly due to altered disease dynamics or treatment efficacy. This emphasizes the complex interplay between 

intervention strategies and population-level outcomes in combating infectious diseases like Zika. 

 

In Figure 16, the optimal control on the susceptible vector population is depicted. As the control increases, 

indicating higher efforts in environmental management like source reduction and water management, the susceptible 

vector population also increases. This counterintuitive relationship suggests that intensified environmental 

management might inadvertently create more breeding grounds for mosquitoes, leading to a rise in the susceptible 

vector population. This underscores the complexity of disease control strategies, emphasizing the need for 

comprehensive understanding and careful calibration of interventions to achieve desired outcomes effectively in 

combating Zika virus transmission. Figure 17 depicts the impact of optimal control measures on the exposed vector 

population over time. As the control effort increases, initially, there's a notable decrease in the exposed vector 

population, suggesting effective management strategies such as environmental interventions. However, after 

approximately two weeks, the exposed vector population begins to rise again. This implies a potential resurgence of 

vector populations due to factors like environmental changes or diminishing effectiveness of control measures over 

time. Further analysis would be needed to understand the dynamics driving this observed trend and to optimize 

control strategies accordingly. Figure 18 depicts the impact of optimal control measures on the infected vector 

population in the context of Zika virus transmission. As the level of optimal control increases, indicating intensified 
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efforts such as environmental management, the infected vector population diminishes. This reduction suggests a 

successful intervention in curbing Zika virus transmission within the vector population, possibly through strategies 

like source reduction, water management, and urban planning. The figure underscores the effectiveness of proactive 

measures in mitigating the spread of Zika by targeting the vector population, essential for controlling disease 

transmission dynamics. 

 

Conclusion  

The optimal control measures implemented for managing Zika virus transmission exhibit promising outcomes across 

both human and vector populations. As depicted in Figures 10-15, interventions such as vaccination, treatment, and 

environmental management effectively reduce transmission rates among humans, leading to fewer symptomatic 

cases and a lower overall impact of the virus. However, the complexities of disease dynamics are evident, as seen in 

Figures 16-18, where intensified environmental management initially increases the susceptible vector population but 

ultimately diminishes the infected vector population. This underscores the importance of comprehensive 

understanding and ongoing assessment of control strategies to effectively combat Zika virus transmission dynamics. 

 

Recommendations 

Mathematical framework of the current study on Zika virus can be extended to include parameter estimation and 

sensitivity analysis. 
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