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Abstract

To effectively address rotavirus infections, interventions must be tailored to specific socio-economic contexts and
target populations. This study presents a mathematical model to describe the dynamics of rotavirus, emphasizing
the importance of a comprehensive approach to combating the infection. Sensitivity analysis reveals the influence
of each variable on disease spread and assesses the model's robustness across different parameter values. The
model's epidemiological viability is demonstrated by its equilibrium in endemic conditions, stability in disease-
free scenarios, non-negativity, and boundedness. Optimal control measures significantly impact virus
transmission, with simulations showing that combining diverse strategies effectively reduces the spread of
rotavirus. These findings highlight the importance of balanced and adaptable control measures, leading to
enhanced immunity, reduced infection rates, and better health outcomes for affected communities.

Keywords: Mathematical Model, Rotavirus, Sensitivity Analysis, Optimal control, Epidemiological viability

Introduction

Ruth Bishop and colleagues used electron micrography to find a viral particle in the intestinal mucosa of infants
who had diarrhoea in 1973. The name "rotavirus™ was given to this virus as a result of its resemblance to a wheel
(rota is Latin for wheel) (Margaret & Penina., 2021). Before the introduction of vaccines, it is estimated that
around 2.7 million cases of rotavirus infections occurred annually in the United States. Approximately 95% of
children had at least one rotavirus infection by the age of 5 years. These infections led to significant healthcare
burdens, including 410,000 physician visits, over 200,000 emergency department visits, 55,000 to 70,000
hospitalizations, and 20 to 60 deaths each year in children under the age of 5. Rotavirus was responsible for 30%
to 50% of all hospitalizations due to gastroenteritis in this age group, with the highest incidence of clinical illness
observed among children aged 3 to 35 months (Margaret et al., 2021; Loyinmi et al., 2021; lImi et al., 2020). As
of 2016, rotavirus continued to be the primary cause of fatal diarrhea in children globally, resulting in nearly
129,000 deaths in children aged 5 and under. Approximately half of these fatalities were concentrated in four
nations: the Democratic Republic of the Congo, India, Nigeria, and Pakistan (Sydney, 2023; Agbomola &
Loyinmi, 2022b). Rotavirus is a global presence, with its occurrence spanning across the world. Before the
introduction of vaccines, the share of severe diarrhea cases in children under the age of 5 attributed to rotavirus
was comparable, approximately 35% to 40%, in both developed and developing nations. This suggests that solely
enhancing sanitation measures is insufficient for infection prevention. Additionally, the prevalence of distinct
rotavirus genotypes can vary based on geographical location and time period (Margaret & Penina., 2021). The
rotavirus is frequently transmitted through hand-to-mouth contact, and infection can occur when you touch a
contaminated object or surface and subsequently touch your mouth. Another route of infection is through the
consumption of contaminated food. The virus is shed through feces, and according to the CDC, this is how it
enters the environment. The majority of infections occur when individuals come into contact with infected fecal
matter (Margaret et al., 2021; Sydney, 2023; Agbomola & Loyinmi, 2022b). To prevent the spread of rotavirus,
it is important to practice thorough hand washing after handling and disposing of a child's soiled diaper.
Additionally, it's advisable to disinfect areas used for food preparation or consumption, as well as surfaces that
may have been in contact with stool or urine during diaper changes (Idowu & Loyinmi, 2023a; Loyinmi et al.,
2023; Pitzer et al., 2012).

Mathematical modelling has serves as a crucial tool for public health decision-makers and researchers (Loyinmi
& ljaola, 2024a; Loyinmi & ljaola, 2024b; Loyinmi et al., 2024; Idowu & Loyinmi, 2023b). It has empowers them
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to gain a deeper understanding of disease dynamics, develop effective strategies for disease control and
prevention, allocate resources efficiently, and ultimately improve the health and well-being of communities
(Loyinmi & Ghodogbe, 2024; Kraay et al., 2018). This interdisciplinary approach plays a vital role in addressing
diseases like rotavirus and other public health challenges worldwide (Lee et al., 2024; De Blasio et al., 2010)

Since the introduction of the rotavirus vaccine, dynamic mathematical models have played a crucial role in
assessing its impact on severe rotavirus-related deaths and the overall prevalence of diarrhoea in diverse socio-
economic contexts (Loyinmi et al., 2024; Ernest et al., 2020; Park et al., 2017; Pitzer et al., 2012). These modelling
studies have examined the factors driving the transmission dynamics of rotavirus within countries, identified
critical elements influencing vaccine effectiveness, and proposed strategies to enhance its efficacy. Notably, it has
been demonstrated that the failure to complete the recommended vaccine schedule can significantly diminish its
effectiveness (Gbodogbe, 2025; Darti et al., 2020; Lopman et al., 2012; De Blasio et al., 2010; Shim & Galvani,
2009). However, it's important to recognize that while rotavirus vaccines have proven highly effective, there has
been insufficient attention given to alternative methods of controlling rotavirus. While vaccines have been a key
component, a comprehensive approach to rotavirus control should encompass a combination of vaccination and
other preventive measures. These measures include promoting better hygiene practices, advocating for
breastfeeding, utilizing oral rehydration therapy (ORT), providing zinc supplementation, and strengthening
healthcare systems (Sydney, 2023; Agbomola & Loyinmi, 2022a; Margaret et al., 2021; Gaalen et al., 2017; Shim
& Galvani, 2009; White et al, 2008). To achieve a holistic approach to tackling rotavirus infections, interventions
must be tailored to specific socio-economic contexts and target populations. This research paper emphasizes the
importance of such a comprehensive strategy to address rotavirus infections comprehensively.

Materials and Methods
We adapted and modified a model similar to the SIRS (Susceptible-Infectious-Recovered-Susceptible) model
developed by Ernest O. and colleagues (Ernest et al, 2020). In brief, the model includes the following classes:

Maternal (M ): Represents individuals with maternal immunity that gradually diminishes over time, making them
fully susceptible to the initial infection (SO). Vaccinated before first infection (V, ): Represents individuals who

received a rotavirus vaccine before experiencing their first infection. First infection ( I, ): Represents individuals
in the early stages of their first rotavirus infection. Severe cases of first infection requiring hospitalization ( H, ).
Recovered from the first infection ( R, ): Represents individuals who have recovered from their first infection but

may still be susceptible to subsequent infections. Susceptible to secondary infection (S, ): Individuals in this class
have lost immunity gained from the first infection and are now susceptible to a secondary infection. Vaccinated
before second infection (V,): Represents individuals who received a rotavirus vaccine before their second
infection. Second infection (1, ): Represents individuals experiencing a second rotavirus infection, with assumed
lower infectiousness compared to the first infection. Severe cases of second infection requiring hospitalization (
H ). Recovered from the second infection ( R, ): Represents individuals who have recovered from their second
infection but may still have temporary immunity. Partially immune susceptible to subsequent infections (S, ):

Individuals in this class have temporary immunity after the second infection, which gradually wanes over time,
making them susceptible to subsequent infections, typically milder or asymptomatic. Vaccinated before third

infection and subsequent infection (V3): Represents individuals who received a rotavirus vaccine before their

third infection and subsequent infection. Third infection and subsequent infection ( |3): Represents individuals
experiencing a third rotavirus infection and subsequent infection, with assumed lower infectiousness compared to
previous infections. Severe cases of third infection and subsequent infection requiring hospitalization (H,).

Recovered from the third infection and subsequent infection ( R3 ): Represents individuals who have recovered
from their third infection and subsequent infection but may still have temporary immunity. After the temporary
immunity wanes, individuals return to the partially-immune susceptible class (S,) and remain subject to

subsequent infections. This model allows for a detailed exploration of the dynamics of rotavirus infection,
vaccination, hospitalization and immunity over multiple infection cycles.
The force of rotavirus infection is given has

A=D(1,+OM +0N, +O,H, + 6N, + 6,1, + G,H, + 0N, + 6,1, + 6,H,) (1)
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Where @ denotes rotavirus contact rate, &,,6;,and O represent the adjustment rate infectious state and

6,,0,,0,,05,0, and 0, are associated with the level of hygiene awareness among maternal class, vaccinated

individuals and hospitalized individuals.
Details of the parameters used in the model are described in Table 1. The flow map of rotavirus disease is presented
in Figure 1.

Table 1: Description of parameters used in the mode

Parameters Description
&0 Inclusion rate into maternal class
Q(]_ —p— g) Inclusion rate into susceptible class s,
Qp Inclusion rate into vaccination class v,
K Susceptible rate of maternal class
Vaccination rate of maternal class
a Vaccination rate of susceptible class s
a, Vaccination rate of susceptible class S,
a, Vaccination rate of susceptible class S,
A Force of rotavirus infection
n Lower infection risk via maternal antibodies
4 Lower infection risk via vaccination
o Hospitalization rate of first infection
T Recovery rate of first infection
4 Waning rate of temporary immunity
o, Hospitalization rate of second infection
7 Recovery rate of second infection
o, Hospitalization rate of third infection
T, Recovery rate of third infection
H Natural death rate
Rotavirus disease induced rate
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Figure 1: Schematic diagram interaction of each compartment
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The equations of the model
M =&Q 1AM — (¢ + x + )M
So = Q- p—&)+ &M — AS, — (& + u)S,
Vo = pQ+ @M +aS, — YAV, — 1V,
I, =AM + AS, + JAV, — (o + . + S,
H,=ol, —(t + u+8)H,
R:II.:T'_|1_(‘//+/’!)R1
S, =yR, —AS,; _(al +/U)Sl
V, =S, —yAV, — 1V,
I, =AS, + AV, — (o, + £+ )1,
H,=0c,l,—(z, + u+5)H,
R, —Tle_(‘//"‘#)Rz
S, =w(R, + Ry)— AS, —(a, + 11)S,
V, = a,S; — YAV, — 1V,
I, =AS, +yAV, — (o, + u+ S)I,
H, =0c,l,— (2'2+,u+5)H

Ry = 7,Hy —(w + 1R, (2)
with initial condition
M(0)>0,5,(0)>0,V,(0)>0,1,(0)>0,H,(0)>0,R,(0)>0
s,(0)>0,v,(0)>0,1,(0)>0,H,(0)>0,R,(0)>0,
s,(0)>0,V,(0)>0,1,(0)>0,H,(0)> o R,(0)>0
Mathematical Analysis of the Rotavirus Model
Non-negativity and boundedness of Solution
The differential equation for the population is as follows:

N=M+S,+V,+1,+H, +R +S +V, + I, + H, + R, + S, +V, + I, + H, + R, @)
Putting equation (2) into equation (3) eliminating correctly, we have

dN (4)

o —=Q- N+, +H, + 1, +H,+1,+H,)
Theorem I: 1f (M, Sy,Vy 1, Hy R, S,V L 1, Hy Ry, S, Vs 1y, Hy, Ry ) s the solution of
equation (2) with the initial conditions in a biologically feasible region A with:
A=(M,S,V, 1, Hy RS, Vs o1 Hy RyS, Y, 1 Hy R, Je RE N, < 2

U

Then A is non-negative invariant.
So, at DFE ¢ = 0, equation (4) becomes

dN ®)

=Q—uN
at
Using integrating factor method, we have’
6
~limN(D) <2 (©)
t—ow lu

Here, we verified the non-negativity of the solution which ensures that the rotavirus model's predictions are
physically and epidemiologically plausible, and that it does not generate unrealistic scenarios where the number
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of individuals in a particular compartment becomes negative and also the boundedness of the solution was verified,
which shows the rotavirus model do not grow unbounded, but rather, their values remain within a defined range
or limit. In the rotavirus transmission, the number of individuals in each compartment does not grow indefinitely
but remains within realistic bounds. And also the boundedness ensures that the model's predictions do not lead to
unrealistic scenarios where the disease spreads uncontrollably and reaches unattainable levels.

Rotavirus-free steady-state.

It need be mentioned that even in the absence disease every individual in the population is vulnerable (i.e.,

Susceptible). So, then, Sg # 0, and all other compartments are equal to zero
Thus, the rotavirus model’s system of equations (2) gives,

Q—,qu,) =0
And this gives
7
Sy :9 (7)
y7i

We have the Rotavirus-free steady-state for the individuals
(M,S.Vy 1y Hy RS,V L1, Hy R,,S, Y, 1y Ha Ry ) s,

o ®)
E°=|0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Y7,

Basic reproductive ratio
The basic reproductive ration of Rotavirus model’s system equation (1) is obtained via the method of next

generation matrix formulated by Diekmann and Heesterbeek. Using R, = p(FV _l) the new infection terms,

F and transition terms, V of system (1) are respectively given as;

[7AM + AS, + yAV, | (o +u+0),
—n7AM — &+ (p+x+ u)M
— AV, —pQ-gM —asS, + 1V,
0 —ol, +(r+u+0)H,
— YAV, —o,S, + 1V
F- JANS and.V = 191 T HVy
AS, + yAV, (o, +u+0),
0 —oyl, +(r, + 1+ 6)H,
— AV, —a,S, + N,
(9)
AS, + yAV, (o, + u+0),
10 | _—0'2|3+(r2+,u+5)H3_

Where A = CD(I1+6?1M +0N,+0,H, +6V, +6,1,+0,H,+ 0V, +6,], + 09H3)
AtE°  taking the partial derivatives of F and V gives,
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[0Q 60Q 0,00 0,00 6,00 H,0Q 60 6,00 6OQ 6OQ] (10)
4 on u u U u U U U u
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
F=| 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
L0 o 0 0 0 0 0 0 0 0o |
[vi 0 0 0 0 0 0 0 0 0]
0 v2 0 00 0O 0O0 0 O
0 -¢ 4 00 0O 00 0 O
- 0 0V 0 0O 0O0 0 O
Vo 0 0 0 0 u O 0 0 0 0
0 0 0 0 O va 00 0 O
0 0 0 0 0 -0, V50 0 O
0 0 0 0 0 O 0 u O 0
0 0 000 O 0O V6 O
| 0 0 0 0 0 O 0 0 -0, V7]

where Vlz(0'+/1+5), V2:(¢+K+y), V3:(z'+,u+5), V4:(0'1+,u+§), V5= (7, + u+9)
V6:(O'2+,u+5) and V7=(Tz+,u+§)

The basic reproductive ration is the same as the spectral radius of the next generation matrix FV . Due to the
complexity of the model, we make us of Maple 13 to compute the basic reproductive ration and thus, from above,

we obtain the expression for R, as
dQ o0 (11)
1+ .
o+ u+S\ (c+u+0)

Stability of DFE Point
Theorem Il: The disease-free equilibrium of the rotavirus model system (1) is considered locally asymptotically
stable (LAS) if all Jacobian eigenvalues of the system have negative real values.

R, =p(FV )=

Proof:

To demonstrate the theorem mentioned above, we calculate the Jacobian matrix of the model's system at
Q

E° =| 0,—=,0,0,0,0,0,0,0,0,0,0,0,0,0,0 |. The Jacobian matrix, denoted by
y7;

J(I\/I,SO Vool H R LS, VYL L, H, R, LS,V HS R, ) allows us to calculate and assess
the eigenvalues of the system. The Jacobian matrix is given as follows:
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-v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
_%00 _, @60 00 @060 _®00 _©60 040 _®60 _®40 040
Z yZ I Iz Iz “ I “ Iz “
® 0 -u 0 0 0 0 0 0 0 0 0 0 0 0 0
Q00 000 . 00 @00 @00 D00 @40 ®0Q @40 ®40
u “ Z Z u u u H u “
0 0 0 o -v4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 . -v5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 vy -v6 0 0 0 0 0 0 0 0 0
J=| o 0 0 0 0 0 o -u 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -v7 0 0 0 0 0 0 0
0 0 0 0 0 0 o 0 o -v8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 -v5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 y -9 0 0 0 0
0 0 0 0 0 0 o 0 0 0 0 a -u 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -v10 0 0 (12))
0 0 0 0 0 0 0 0 0 0 0 0 0 o, -vi1 0
0 0 0 0 0 0o 0 0 0 0 0 0 0 0 T, -5

Where V1= (p+x+ 1), V2 =(a+ 1), V3=(c+ uu+ ), VA= + u+35), V5= + p),
V6:(a1+,u), V7 :(01+,u+5), V8:(2'1+/1+5), V9:(052 +/1), VZI.Oz(O'2 +y+5), and

vil= (z'l+,u+5)

Clearly, the eigenvalues of matrix J are represented by the diagonal elements in the matrix shown above (Idowu
et al 2023). It is evident that these eigenvalues are purely real and do not contain any complex components. The
signs of these eigenvalues are of utmost importance in determining the stability of the Disease-Free Equilibrium

(DFE). In this specific situation, all eigenvalues have negative real components, confirming the local asymptotic
stability of the rotavirus at the DFE.

Existence of the endemic equilibrium points
The endemic equilibrium points are defined as
E*=(M*S,*V, % 1, % H, % R %, S, %V, *,1,% H,* R, *,S,%V, * 1% H,* R, *) satisfying
M'=S,'=V, '=1,'=H,'=R,'=S,'=V, '=1,'=H,'=R,'=S,'=V, '=1,'=H,'=R,'=0, (13)
by equating equation (1) to 0, we have;
0=EQ-nAM *—(¢+ Kk + u)M *
0=Q1— p—&)+xM *~AS, *—(a + u)S, *
0=pQ+¢M *+aS;*—yAV, * -V, *
0=7AM *+AS, *+yAV, *~(o + u + 5), *
O=ol, *(r+u+5)H,*
0=7H, *~(y + )R, * (14)
0=yR, *~AS, * (e, + )3, *
0= S *—yAV, *— iV, *
0=AS, *+)AV, * (o, + u+5)l,*
O=0o,l,*(r,+ u+5)H,*
0=7,H,*~(y + u)R, *
0= ‘/’(Rz *+R, *)—A32 *_(az + /U)Sz *
0=0a,5,*—yAV, *—uV, *
0=AS, *+)AV, *~(o, + u+5)I,*
0=0,l,*~(z, + u+S)H, *
0=7,Hy*~(y + )R, *

Where A:d)(ll+6?1M +0N,+0,H, +6V, +6,1,+0,H,+ 0V, + 6,1, +6’9H3)
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M*=
A+ (¢+x+u)
S *— Q(l—p—§)+K& ,
P (A+(a+ oA +(p+ K+ p))

v PAA T (at ) +(f+ i+ p)) + pEAA + (0 + ) + Q- p - §) + 62D

’ (A + 1) A+ (a + p)\pA + (@ + 1+ 1))

IAGQAPA + YA+ (o + )+ (A + )AQ(L- p = £) + xX2)
Lt PN (ot )+ (¢ + i+ 1))+ GEO(A + (@ + )+ Q- p = )+ k&)
' (o +p+SNoA + p)A+ (@ + p)nA +(g+x + 1))
IAEQ(A + p\A+(a+ )+ (A + A Q(L- p— &)+ x&2)
o |+ PN+ (@t p))pA+ g+t )+ pEA+(a+ )+ (- p— &)+ k) |

(c+u+90) (o +u+ SN+ ) A +(a+ )\ nA +(g+ &+ )

H,*=

IAGQ(A + YA+ (e + p))+ (A + wAQL- p - &)+ kD)
o + pQA+ (o + p))A + (B + i+ 1))+ EAA + (@ + )+ 2(QL— p - £)+x2) |
( +u)e+p+0) (o4 u+ SN+ A+ (a+ A +(p+x+ 1))

R*=

AN+ A+ (a+ )+ (A + AQL- p &)+ kD)
yro + pOA+ (@ + p))A + (P + x + )+ pEA + (o + )+ 2(QL— p - £)+ k22 |
(A+(ay + )y +p)e + p+6) (o +p+8)om+ ) A+ (a+ A+ (@ +x+ )

S*=

IASQ(A + A+ (a + )+ (A + L)AQL- p - &)+ k&2)
Ve ayro + PN+ (e + p))gA +(p+ i+ 1)+ JE(A + (o + ) + a(QL— p— £)+ ) |
b OA T A+ (o + )y o+ e+t S) (o + o+ SNoA + A+ (e + w)\h +(p+x + )

_ AS *+yAV, * | H.*— 0-1(A81*+7/AV1 *) CR.*— Z'10-1(/\81*"'7//\\/1 *)
(ov+u+s) ° (mru+sNo+u+s) * (y+pla+utoNo+u+s)
g *— v Tlo-l(Asl*+7AV1 *) LR *
? A+o,+u (1//+,u)(2'1+,u+5)(61+,u+5) )
oy [ z'1(71(/\81*4'7/1\\/1 *) IR *J

OA+pu)A+a, + ) (y + u)ey + i+ 8o+ u+5) 7

(( 7,04(AS, * +7AV, *) )+ R, *j{ Ay n rAay :|
I, *= ,

I *

V,* =

w+uNe,+pu+SNo, +u+é Ava,+u (A+ulA+a,+ p)
(0'2+/1+§)

0'( 1'101(A81*+7/AV1 *) ‘R *J{ Ay N Ao,y }
qoao o rurfoprs) O JAvayrp A+ pfAray+p)]
: (r,+ u+6S)o,+ u+5)
10y (Asl *+yAV, *) * Ay yAay
7,0, +R +
na_ W+ ufe+utd)o+p+d) Avag+u (A+ufA+a,+u)|
’ ( +p)e, + p+S)o, + u+5)

Utilizing conventional methodologies, the model exhibits disease-free dynamics at equilibrium point E°

Sensitivity analysis of the Rotavirus model
So, we perform an analysis of the reproductive ration Rn of the model which checks for the variation and effect

of a parameter on R, when increased or decreased.
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Definition: The Normalized Forward-Sensitivity Index of a variable X, which exhibits differential dependency
on parameter Y, is outlined as follows:

oxX Y
X& =22 —

oY X

Concerning the model parameters, we will proceed to calculate the sensitivity indices for the basic
reproductive ration R, denoted as

(15)

DQ ob,
R, = 1+ :
wo+u+8) (r+p+0)

Sensitivity index for @
The Normalized Forward-Sensitivity Index of @ is given by:

Xg" = @2
o0 R,
Calculating and evaluating the derivatives in (16) gives;
Xo = Ko 1 Rn.2
oo R, @ R,
X =41 17)

This yields the sensitivity index A .
The sensitivity indices of all other parameters in the fundamental reproductive ration are also obtained using the
same procedure, which is consistently applied. Therefore, the sensitivity indices of the parameters are listed
below in Table 2, and their visual implications are seen in Figure 2 and Figure 3.

Table 2: Sensitivity indices about additional parameters within the context of the basic reproductive ratio.

(16)

Paramete  Values Source Index  Sensitivity Index
rs sign value

() 0.5 Ali Raza et-al (2022) + 1

Q 0.5 Ali Raza et-al (2022) + 1

0, 0.35 SCIENCE DIRECT + 0.01190476

o 0.2-0.9 ASSUME - -0.1050543

yz 0.01 Ali Raza et-al (2022) - -1.0058684

) 15 Ali Raza et-al (2022) - -0.8802665

T 4.3 NIHMS - -0.0088108

sensitivity index value

N R O

M sensitivity index value

Figure 2: Visual depiction of parameter sensitivity
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Figure 3: Effect of w,and w,on R,

Optimal Control Strategies for Rotavirus
Here are some key components of optimal control for rotavirus: For first infection, C, connotes prenatal education

about the importance of vaccination and vaccination during pregnancy. C,, connotes routine vaccination of infants

and young children with rotavirus vaccines. C3 connotes isolation and medical care of infected individuals. C,

connotes implementation of infection control measures and supportive care to hospitalized patients and, C5
connotes immunity monitoring and booster vaccination for individuals who have recovered. For the second
infection, C connotes the effort to ensure that children receive the recommended doses of rotavirus vaccines

including booster shots. C, connotes the continuation of isolated and medical care of infected individuals. Cy
connotes continuation of implementation of infection control measures and supportive care to hospitalized
patients, and C9 connotes continuation of immunity monitoring and booster vaccination for individuals who have

recovered. For the third infection, it C,, connotes the effort to ensure that children receive the recommended

doses of rotavirus vaccines, including booster shots to maintain immunity against repeated infections. C,,

Connotes the continuation of isolated and medical care to manage symptoms, reduce virus shedding, and prevent
complications. Maintaining strict infection control measures in healthcare settings involves continuously
monitoring recovered individuals for immunity levels and frequent booster vaccinations for individuals. Based on
these assumptions, the following set of new equations is derived:
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M =& -(1-C,)7AM —(C, + x + )M

S, =Q(—p-&)+xM —(1-C,)AS, —(C, + 1)S,

V, = pQ+C,M +C,S, — (1-C, AV, — 1V,

I, =(1-C,)yAM +(1-C,)AS, + (1-C, JyAV, —(C, + £+ S)I,
H,=C,l, —(c+u+0o)H,

Ri:lel_((l_CS)w_'_:u)Rl

Si :(1_C5 )'//Rl _(1_C6)A51 _(Ce + /U)Sl

V, =C.S, —(1-C, AV, — v,

I, =(1—C,)AS, +(1-C, AV, —(C, + 1+ S)I,
H,=Cyl, —(z, + u+J)H,

Rlzzlez_((l_Cg)‘//‘Fﬂ)Rz

S‘z :(1_C9)'/’R2 +(1_C13)WR3 _(1_C10 )Asz _(Clo +,U)Sz
V, =C,S, —(1-C,, AV, — 1V,

I, =(1-Cy)AS, +(1—C,, JAV, —(Cp, + + 5)I,
Hé=C12|3—(2'2+,u+5)H3
Ré:rzH3—((1—C13)(//+,u)R3

(18)

Analysis of the Model Incorporating Preventive Measures

Within this segment, we constructed a model centered on an objective functional framework, showcasing
the potential for manipulation through the utilization of Pontryagin's Maximum Principle. By focusing on the
optimal configuration outlined in the system of equations (18), we have highlighted the emergence of a significant
control concern, which we subsequently elucidated before delving into its comprehensive global optimization.
The intricate task of selecting the most efficacious strategies is encapsulated by the objective functional denoted
as H. The overarching pre-established aim entails the minimization of the populace in all classes, all within a
designated time interval [0, K].

Let L= {(Cl,Cz ,C;,C,,C,,Cs,C,,Cy,Cy,Cp,Cy,Cy C13)€ L}be Lebesgue measurable on [0,1],
where 0<C, (t)<1€[01]i=12,34,5,6,7,8,9,101112,13

Then, we have the objective function, O, to be

P 19
o(C)= I(T1R3 +T,H, + TV, +T,S, + TR, + T,H, + TV, +T,S, + T,R, + ToH, + TV, + T,,S, + TsM +%(U )jdt (19)
0

where, C =C,,C,,C,,C,,C,,C,,C,,C;,C,,C,,C,,,Cpp,Cos
Y -u,c,’+U,C,*+U,Cc,2+U,C,” +U.C.>+U,C,> +U,C,? +U,C,* +U,C,’

2 2 2 2
+U10C10 +U11C11 +U12C12 +U13C13
constraint to (18)
The terminal time point is represented by the value K , while the coefficients T, to T13 correspond to the weight

constants attributed to the virus within distinct groups. The primary objective of this section centers on the
reduction of the operational expenditure as indicated by equation (19). Furthermore, our investigation extends to

encompass an analysis of the social cost U13C132 associated with the described scenario.
In order to fulfil the aim of addressing the control problem, we endeavour to identify the functions;

an
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e/ ®.c. @, 1., (1.C5 (1), Co (1.C (0.4 (1. (0).Can (1) Coy™(0).Coy (1) Cos” (1)) such that
o(c*)=min{o(C).(C)e L} (20)

Where, C" =C,"(t).C, (t).C4 (t). C. (t). C (1) C4 (1) C; (). 4 (1).Cy (1), Cyo (1)Cy” (1)Co (1).Cos (1)

Existence of an Optimal Control Solution
Theorem: From equation (20), Consider O(C), subject to (18) and with t=0 be the initial condition, then given

the optimal control to be C” such that
o(c”)=min{o(C).(C)e L}
Proof: Because the integrand of O demonstrates convexity concerning the control measures C the existence of

an optimal control solution is ensured.
Next, it is essential to demonstrate the optimal solution. The Lagrangian is expressed as follows:

G=TR,+T,H, + TV, +T,S, + T,R, + T,H, + TV, +T,S, + T,R, + T, H, + TV, +T,,S, + T,M +%(U)t (21)

u=u,c’+u,c,’+u,c,’+u,c,’ +U.C.* +U,C,2+U,C,> +U,C,> +U,C,’

2 2 2 2
+U10C10 +U11C11 +U12C12 +U13C13
The Hamiltonian function is given as;

H=TR,+T,H,+TV,+T,S, +T,R, + T,H, + TV, + T,S, + T,R, + T, ,H, + T,,V, + T,,S, + T;;M +%(U)t

where

+ P M+ [S, T+ W, Vo T+ 1 T4 [H ]+ e [R]
+'¥s, [51']"‘ Y, [Vll]+ Y, [Iz']"' Wy, [Hz']"' We, [Rzl] (22)
+ ¥[8, T+, Vo T, 1T [Hy T [Ry]

Given are distinct and non-overlapping variables.
We are now poised to employ the essential conditions to the Hamiltonian for analysis.
To unveil the adjoint equation and fulfill the transversality condition, we leverage the Hamiltonian H . Through
the process of differentiation, we ascertain the values concerning the variables with respect to the Hamiltonian.
This leads us to the formulation of the adjoint equation, which is expressed as follows:

Ty +((1—C1)77((1)01M +A)_(C1 +K+,“))lPM (23)

(1-C)n(@6M +A)
d¥,  oH +(—K+(1—C2)\'1>9180)‘l"50 +(-C, ‘*’(1_(:3)7'(1)6’1\/0)\PvD _[+ (L-C,)D8;S, + (L-C, yay, v,

o dM ((1 - Cs )(D 9131 )lpsl + (1_ C7 )7'@ 91V1\Pv1 - ((l - Ce )(D 9131 + (1 - C7 )7’@ 01\/1 )lP|2
+ ((1 - ClO )q) 0152 )‘"Ps2 + (l - Cu )7’@ glvzlpvz - ((1 - ClO )(D 9152 + (1_ Cu )7'@ 91\/2 )lIJ|3
dv. oH 24
o [, (@A (€ )Y, G, (-, ] &
0

__Tn + (1_C1),7®92M\PM + (:I-_Cz)q)ezso\ys0 + ((1_(:3)7(@92\/0 +A)+ /”)\Pv
1-C @o,M +(1-C,)D6,S, 25
¥ +((1-C,)6,8,)¥, +(1-C, DoV, ¥, (25)

dlp\/0 aH (+(1—C3)}/((D92VO+A) Iy +(( s)q) 2 1) s, +( 7)7(D 2V Ty,
((1_C6)q)0281 + (1_C7)7(D92V1)T|2 + ((l—Cm)CDHZSZ)‘PS
_+ (1 - Cn )7’(1) ezvz‘Pvz - ((1 - ClO )(D 9282 + (1 - C11 )7’(1) 02\/2 )lPI

dt dV
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[(1-C, JgOMY,, +(1-C, DS, ¥, +(1-C, oV, ¥, 1 (26)
1-C, )np®M +(1-C, JDS
o, g |[EsSIMGcs N
= a. +@-cpov, +(C+u+5)) " '
(1_ Ce )(Dslqls1 + (1_ C7 )7'(1)\/1\%1 - ((1_ Ce )q)sl + (1_ C7 )7’<DV1 )‘PI
_+ ((1_C10 )Sz)(qus2 + (:I-_Cn)?’q)vz\Pv2 _((1_C10 )@SZ +(1_C11)7'(DV2 )\IJI
—Tp +[1-C Jr®@OMY,, +(1-C,)0O,S,¥, +(L—C, dON, ¥, |
l C,ndo.M +(1-C 6.5,
[ )77 +( Z)q) }Ph +(z’+y + 5)‘I’H1 -¥y (27)
" H 1- C ]/CDQV
dtHl ST +(1-Co 00,8, )Y, +(1-C, ooV, ¥,
D (@-Cooa.s, + (1-C o), + (1 Cy 06,8, )
+( _C11)7’(D93V2‘Pv2 _((1_C10)CD6382 + (l_cn)?’q) 03V2 )\PI
d¥ 28
W MLy, (@-Cos ¥, ~-C s )
dt dR
d¥ 29
T ds [T, + (@ CoA + (Cy 4 i), —Co¥, —(-COAY, ] (29)
_T7 +(1_C1)77(D94M\PM +(1_Cz )@9450'{150 +((1_C3)7(D‘94Vo )"on (30)
ot o |8 S SRS e o s v, 0 oo - n)+ e,
TN V3 4Vo
o dVl _((l_ce )@6481 +(1_C7 )7((1)04\/1 +A))\P|2 +((1—C10)®9432 )\1"52
+ (1_ Cn )7CD QAVZTVZ - ((1_ ClO )q) 9482 + (1_ Cn )7CD 94\/2 )lI"l3
[(1-C Jn@ oMY, +([1-C,)DO,S, ¥, +(1-C, oV, ¥, T (31)
1- M +(1-
dy, oH |- (1-C oM +(1-C, )06, P, +(1-C,)0a,S, ¥, +(1-C,)ydoV, ¥,
Tzz_ﬁz +(1_Cs)7’q)‘95\/0 ' ' '
’ _((1_C6)q)9551 + (1_C7 )7@95\/1 _(Cs tH+t 5))LP|Z _C&\PH2
_+ ((1—C10)(D¢95$2)\P52 + (1_C11 )7q)‘95vquvZ - ((l_clo)cDHSSz + (1_C11)7'<D‘95V2 )\PI3
(=T, + (1= C p®@ oMY, +(1-C,)DO,S, ¥, +(1-C, oV, ¥, 1 (32)
1-C, n®6.M +(1-C, J06.S
d¥,, oH |- 1-Cro6,M +(1-C, Jo6,S, ¥, +(1-Cy )08, %, +(1-C, ooV, ¥,
dt :_dH = +(1—C3)7d)6’6V0
’ _((1_C6)(D0682 +(1_C7 )?’(1)‘96\/1)\IJ|2 + (71 +/'H'§)kPH2 _Tllsz
_+ (l_Clo)(DHGSZ\PSZ +(1—C11);/<Dt96V2‘PV2 _((1_C10)(D9682 +(1_C11)7’(D96V2)‘P|3
d¥ 33
ML, —-C ] )
dt dR 2
d¥;,  oH (34)
Tts= dS [_T4+((1_C10)A+(C10+:u))‘110 -Gy, ((1 ClO) ) I]
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~T,+(1-C n®@O,M¥,, +(1-C,)0O,S,¥, +(1-C, OV, ¥,

L-C oM +(1-C,)06,S,
%: ( 1- C ;'CDHV ] |1+(1—C6)<I>97S1\P51+(1—C7)7(D97V1‘{’v1
Ve ( 6)(1)6? Sy +(1 C )@HV )LPIZ +(1_C10)(I)67SZ‘IJSZ +((1—C11)}/((I)497V2 "'A)"'/”)q'lv2 (35)

(( -Cyp )‘I)07sz + (1_ Cu)?’(q) oV, + A))\yl

(17C1)77q)69M +(17C2)CD6’950]‘{}I1 (36)

~T, +([1-C Jp@ MY, +(1-C,)6,S,¥s, +([1-C, DOV, ¥, _[+(1—c VDO,
3 9%0

dy oH
THa == dH =+ (1_Ce)®'9951‘1}s, + (1_C7 )7(1)99\/1‘{‘\/, _((1_C6 )(139932 +(1_C7 )7‘1)99\/1)\1}12 +(1_C1o )(DHQSZ\PSZ
3
+ (1_C11 )7® egvzq"vz _((l_clo )@9952 + (1_C11 )%Degvz )“pl3 +(T2 +:u+5)lPH3 _"'z‘"PR3

37)

d¥, oH
dtRa = dR [ T +((1 Cls)‘//"‘/“) (l C13)W52:|

Given the conditions of transversally to be

W,ie{M, SV, .0, Hy RSV, LT H, LR, LS,V 1, Ha Ry

In pursuit of minimizing the Hamiltonian, denoted as H, in relation to the optimal control variables, we
undertake the process of differentiation concerning

c=¢C,C,.C.C,,CCC,,Cq,Cy,Cpp,Cpy, Cpp, Cop . By doing so, we derive a set of equations,

which we subsequently set to zero to solve for the optimal control configuration. This procedure yields the
sought-after optimal control solution.

M =M*S, =S;.V, =V, 1, =1, H, =H[,R, =R[,S, =S/ ,V, =V, I, =1,,
,=H,,R, =R;,S,=5,,V, =V, I, =1;,H, =H,,R; =R;

G=TR,+T,H,+TV, +T,S, +T.R, + TH, + TV, + T,S, + T,R, + T, H, + T,,V, + T,S, +TsM += (U)t

Taking

uU=u,c,’+u,c,’+U,Cc,*+u,Cc,’+U.,C.2 +U,C,* +U,C,” +U,C, +u9<:92

Where , , , ,
+U10C10 +U11C11 +U12C12 +U13C13

g%' =U,C,*~(n(®OM + A)+ 1)V, =¥, +n(®OGM + A, —n®O,M¥,, +ndo,MY, (38)
1

~n®OMY¥,, +7®OMY, —nDOMY,, + nDOMY, —n®O,MY,, + ndOMY, —nd oMY, +nd oMY,

-0 OMY,, + D IMY, —n®O,MY,, +ndO,MY, —n®O,M¥,, + @MY, —ndGMY,, +n®oM¥, =0

STH =U,C,*-®0S,¥s + PGS, —(A-1)¥ —F, +A¥, —DO,S ¥ +D0,S,¥, — DS, ¥, (39)
2

+ DS, —DO,S W, +DOS,Y, —DO,S ¥ +DO,S,¥, —DOS,Ws +DOS,¥, —DOS Vs + DISWP,

—DO,S,¥,, + DO,SY, — DO,S, ¥ +DOSY, —DO,S, ¥ +DO,S,¥, =0

I U,C, 1OV, + JDOV,Y, ~ DOV, + ANE, +H(DON, + A¥, — JDV, W, + OV, T, —JDONE, (40)

dc,
+ 7'(1)93\/0\Y|J - 7'(1)‘94V0\Pv0 + 0 HAVO\YIJ - 7'(1)95V0\Pv0 + 7'(DHSVOLFI1 -1 gevo\l"vﬂ +y0 6’6V0‘1"|1 -0 97V0‘"l’v0 +ro g7V0\P|1
-0 gsvokpvo +0 ‘957’\/0\P|1 - GBVOTVD +DON Y, =

dH —=U,C,*-¥ -¥, =0 (“41)
dC

dH . (42)
— = =UCy* ¥, +y¥ =0
dc,
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dH
dac,
—(A-1)¥g -, +AY, —DO,S, ¥ +DO,S,W¥, —DOS,Y +DOS,Y, —DO,S,Y +DOS,Y,
—DO,S, W, +DO,S¥, —DOS, Y +DOS, Y, —DOS Y, +DO,S,F, =0

dH
dc,
+HDONY, —y(PON, + ANV, +y(DOV, + A, — DOV, + DOV Y, — xDON,YF, + DOV,
DOV, +yDON,Y, - yDON,Y, +1DOV, Y, — DOV, Y, + DOV, Y, =0

=U,C, *—j DOV, P, +1DON,¥, — DOV, ¥, +1DON,P, —jOV, W, + 1OV, ¥, — DOV, Y,

dH
— = =UCy*-¥, — ¥, =0
dC,
dH
— * —
—— =UCy*—yp¥y +y¥ =0
dC,
;TH =U,,C,, ¥~ 6,5, ¥, +DOS,¥, —DO,S, ¥, +DO,S, ¥, —DS,¥, +DS,¥, ~0O,S,¥ +DO,S,¥,
10

—D0,S, ¥, + DO,S,¥, - DOS, ¥, +DOS, W, —DOS, ¥, +DGS,¥, —(A-1)¥ -, +A¥,
—D0.S, ¥, +DO,S,¥, DO,V +DOS, ¥, - DS, ¥ +DO,S,¥, =0
dH

f =U,C, *—® 91V2\IJV2 + P 91V2lP|3 - ezvzl{lvz +yP 92V2lPI3 - @VZTVZ + 7’q)\/2l11|3 - 6’e)VzLIJVZ
11

+IDON, ¥, — 1DON Y, +1DON,Y, — DOV, +yDON,Y, —y(PON, + AP, +y(DOV, + AP,
- 7'(I>‘98V2\]"v2 + 7’c1i)6’3\/2q"|3 - }'(I”gevzwv2 + ;KDHQVZ\HS =0

dH
E = U12C12 *_\PI3 - \PH3 =0
dH
=U;,Cy *_'//\I"R13 +ys, = 0
dC,

By simplification, we obtain a solution for the optimal control to be

(@OM + A)+1)¥,, +¥, —n(@OM + AP, +n®O,MY¥,, - DO,M¥, +ndMY,, —nOMY¥,
+nDOMY, —nDOMY, +nDdO,M¥,, —ndO,M¥, +n®Oo MY, —ndOo;M¥, +ndoM¥,,
|~ 1POMY, +nDO,MY, @MY, +1DOMY, —n@IMY, +7DO,M¥, —ndOMY,
U,

[©6,S,%,, —DOS ¥, +(A-1)F, +¥, —A¥, +DO,S¥s —DOS,Y, +DS, ¥, — DS, P, |
+ 00,5, ¥, ~DO,S, P, +D©O,S¥ —DO,S)Y, +DOS Y —~DOS)Y, + DS,

~DE,S, P, +DOS\Ws —DO,S, P, + PGS Fy, — DS, +DE,S, ¥, ~ PGS,
U,

OOV Yy — DOV, Y, + 7(@6V, + A)“Pvu - 7(CD OV, + A)q'll1 +7DV Yy — OV Y, + DOV Y,
- 7¢)‘93V0‘¥|1 + 7"‘1)6’4\/0\yvu - @HAVD\FH +y0 QSVOLI‘VQ - }AD&SVO\FH +y0 gsvo\l"vn - }'CDHBVO\PI, +y0 '97V0\*‘v0
—1PONY | + 10OV —DON Y, + 1 DOV, —DPON, Y,

U,

‘P,1 +‘I’H1
4 = u,

=UC, *~ 0S¥, + DOSY, ~DO,S Y, +DO,S Y, — DS, ¥, +DS Y, ~DO,S Y, +DES,Y,

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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- w(¥, - ) (55)
T
U 5
DOS, Y —DOS,Y, +DO,S,¥, —~DO,S, Y, +DS ¥, —DS, ¥, + 00,5, ¥, —~DOSV¥, (56)
+HA-1)¥, +¥, —AY, + 00,5, -DO,SY, +DOS Y, —-DOS Y, +DOS,Y, —-DOSY,
o LFOOSTS ~DOSY T DOST, ~DOSY, +DOSY, ~POSY,
6 U,
7'(1)6’1\/1lpv1 - 7'(1391\/1\I}|2 + y(I)HZVI‘PV1 - 7(1)92V1‘P|2 + 7’(13\/1\Pv1 - 7'(13\/1ly|2 + 7'(1)93\/1\I}v1 (57)
- 1o 93V1\Ij|2 + V(CD AN A)LIJV1 - 7((1) OV, + A)lyl2 + }'(1)95\/1‘Pv1 - 1o ‘95V1LIJ|Z + 7’(1)‘96\/1‘"Pv1
Cowe POV Y, + @OV Y, — 0OV, + OGN, -y OOV Y + POV Y, — DOV, Y
7 U,
¥, +Y, (58)
* _ 2 2
g =
US
- 59
e e =) (59)
9 =
U9
©OS, ¥, -GS, ¥, +DO,S, ¥, —DO,S,¥, +DS, ¥ —DS,¥, +00,S,¥, -DO,S,V, (60)
+®0,5,¥;, 00,8,V +00,5,¥; ~DO,S, ¥, + 00,5,V —~DGS, ¥, +(A-1)¥ +¥, —A¥,
. +®@0,5,¥;, —O,S,¥, + @GS, ¥, —DGS,¥, +Db,S,¥s —Pb,S,¥,
10 LJ].0
7(1)01V2‘Pv2 - ﬂglviju + 7’¢'92V2‘“Pv2 - 7(1)6’2\/2"}“3 + 7'(1)\/2l1"v2 - 7’¢‘V2‘“P|3 + 7q)93.\/z"}’v2 (61)
- }’q:’ga\/zq"l3 + }'(Dgts\/z"}]v2 - }’(I:"gs\/zqﬂ3 + 7CD06V2‘PV2 - 7’(1:"95\/2lP|3 + 7((1)‘97\/2 + A)\I"v2
C.*= - 7((1) N, + A)\'p|3 + ?’d)‘gs\/z\yvZ - 7(D98V2"P|3 + %Daevzq"vz - 7'(136’9\/2q"|3
11 LJ11
¥+ (62)
C.* Is Hs
12 =
U12
o L vl ) (63)
13
U

Now, making use of the boundary conditions, the solution given has
C, = min{l,max{0,C, *}};C, = min{l, max{0,C, *}};C, = min{l, max{0,C, *}},
C, = min{l,max{0,C, *}};C, = min{L, max{0,C, *}};C, = min{L, max{0,C, *}}, (64)
C, = min{l,max{0,C, *}};C, = min{L,max{0,C, *}};C, = min{L,max{0,C, *}},
C,, = min{l,max{0,C,, *}};C,, = min{l,max{0,C,, *}};C,, = min{l, max{0,C,, *}},
C,, = min{l,max{0,C,, *}};

¥
ik

And Where A =®(1,+GM +0V, +G,H, + OV, + 6,1, +6,H, + 6N, + 6,1, +6,H,)

Results
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In this simulation, we offer a means to observe the progression of the disease over time, track alterations in various
parameters, and evaluate the effectiveness of interventions. This platform enables researchers and public health
authorities to acquire valuable insights into the disease's behaviour across different scenarios and to assess the
efficacy of diverse control tactics.

The state variables' initial conditions are as follows:, M =150, S, =200, V, =100, I, =200, H, =250
, R, =200, S, =190, V, =150, 1, =150, H, =140, R, =130, S, =120, V, =100, |, =110,
H, =100, and R, =90. Also, £=0.5; 77=0.62; kK =0.333; p=0.3; 6,=0.62; 6,=0.62; 6,=0.35; 7,=8.6;
7,=8.6; ¥ =0.71; y =0.083; 6,=0.5; 6,=0.5; @,=0.5; 6, =0.1; The parameter values needed for the simulation
are displayed in Table 2 above.
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Figure 4: Trajectories for optimizing maternal control

Discussion

Figure 4 illustrates that an increase in the application of the specified control strategies for rotavirus corresponds
to a noticeable boost in the immunity of individuals during maternal care. In simpler terms, when these control
measures are effectively employed, there is a positive relationship with enhanced immunity levels in individuals
receiving maternal care. This implies that the aforementioned strategies- prenatal education, vaccination, isolation,
medical care, infection control, and immunity monitoring- all contribute to improved immunity outcomes in
individuals during maternal care. Figure 4 visually represents this favorable association between the usage of
control strategies and the increase in maternal immunity.
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Figure 5: Trajectories for optimizing susceptibility to the first infection control
Figure 5 demonstrates that as the utilization of the control strategies described in the earlier statements increases,
the number of individuals susceptible to the first infection also rises. Put differently, the more efficiently these
control strategies are implemented, the greater the number of individuals who remain susceptible to the first
infection due to a lower initial infection rate. This suggests that the control measures effectively reduce the
incidence of the first infection, resulting in a larger pool of individuals who have not yet been exposed.
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Figure 6: Trajectories for optimizing vaccination before the first infection control
Figure 6 reveals that as the usage of the mentioned control strategies increases, the number of individuals
vaccinated before experiencing their first rotavirus infection also rises. In other words, the implementation of
these control measures is associated with a higher rate of individuals receiving vaccination before encountering
the virus for the first time. This indicates that the strategies effectively promote vaccination and, consequently,
reduce the risk of rotavirus infection in the population.
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Figure 7: Trajectories for optimizing first infection population control
Figure 7 shows that the implementation of the control strategies mentioned earlier leads to a decrease in the
number of individuals in the population experiencing the first infection, as depicted in Figure 7. In simpler terms,
as more people adhere to recommended measures such as vaccination, isolation, medical care, infection control,
and immunity monitoring, the occurrence of initial rotavirus infections diminishes, as visually represented in
Figure 7. This suggests that these control strategies are effective in reducing the incidence of initial rotavirus
infections.
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Figure 8: Trajectories for optimizing of first infection requiring hospitalization control
Figure 8 indicates that as the utilization of the control strategies mentioned in the previous statements increases,
the number of individuals requiring hospitalization after their first rotavirus infection also rises. In other words,
there appears to be a correlation between the implementation of these control measures and the hospitalization
rate for individuals experiencing their initial rotavirus infection.
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Figure 9: Trajectories for optimizing recovery from the first infection control
Figure 9 suggests that as the utilization of the mentioned control strategies for rotavirus increases, the number of
individuals who have recovered from the first infection also rises, as shown in Figure 9. In simpler terms, the

effective implementation of these control measures is associated with a higher rate of recovery from the initial
rotavirus infection.
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Figure 10: Trajectories for optimizing susceptibility to the second infection control
Figure 10 suggests a relationship between the usage of control strategies for rotavirus and individuals'
susceptibility to a second infection. Specifically, as the usage of these control strategies increases from 0.2 to 0.6,
the number of individuals susceptible to a second infection also rises. However, when the usage of these control
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strategies further increases from 0.8 to 0.9, the number of susceptible individuals starts to decrease. In simpler
terms, it appears that there is an optimal range of control strategy usage (between 0.6 and 0.8) where susceptibility
to a second rotavirus infection is minimized. Beyond this optimal range, increasing the usage of control strategies
may not have as significant an impact on reducing susceptibility or may even yield diminishing returns.
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Figure 11: Trajectories for optimizing vaccination before the second infection control
Figure 11 suggests a relationship between the usage of control strategies for rotavirus and the number of
individuals vaccinated before experiencing their second infection. Specifically, when control strategy usage
increases from 0.2 to 0.6, the number of individuals vaccinated before their second infection also rises. However,
after reaching a certain point (when control strategy usage increases from 0.8 to 0.9), the number of individuals
being vaccinated before their second infection starts to decrease. This indicates that there might be an optimal

range or threshold of control strategy usage beyond which the effectiveness of vaccination in preventing second
infections decreases or becomes less efficient.
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Figure 12: Trajectories for optimizing second infection population control
Figure 12 suggests that as the utilization of the mentioned control strategies increases, the proportion of the
population experiencing a second infection with rotavirus decreases, as illustrated in Figure 12. In simpler terms,

the more effectively these control measures are applied, the lower the likelihood of individuals getting infected
for the second time with rotavirus.
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Figure 13: Trajectories for optimizing the second infection requiring hospitalization control
Figure 13 suggests that as the utilization of the specified control strategies increases, the number of individuals
who are hospitalized after experiencing a second infection with rotavirus also rises, as indicated in Figure 13.
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Figure 14: Trajectories for optimizing recovery from the second infection control

Figure 14 suggests that as the utilization of the control strategies outlined in the previous statements increases, the
number of individuals who have recovered from a second infection with rotavirus also increases. In other words,
the more effectively these control strategies are implemented, the better the outcome in terms of reducing the
number of people who experience a second infection and subsequently recover from it. Figure 14 likely illustrates
this relationship visually, demonstrating a positive correlation between the use of control measures and the
recovery of individuals from a second rotavirus infection.
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Figure 15: Trajectories for optimizing susceptibility to the third and subsequent infection control
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Figure 15 suggests that the effectiveness of the control strategies for rotavirus infections is reflected in the
susceptibility of individuals to third and subsequent infections. When the control strategies are used at a level
between 0.2 and 0.6, the number of individuals susceptible to third and subsequent infections increases. However,
when the usage of these control strategies is increased further, from 0.8 to 0.9, the number of susceptible
individuals starts to decrease after 2 months. This implies that there is an optimal range of control strategy usage,
between 0.2 and 0.6, where the strategies are most effective at reducing susceptibility to repeat infections. Beyond
this optimal range, increasing the usage of the strategies may not yield additional benefits, and in fact, it may lead
to a decrease in susceptibility.
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Figure 16: Trajectories for optimizing vaccination before the third and subsequent infection control
Figure 16 indicates that there is a relationship between the usage of control strategies for rotavirus and the number
of individuals who are vaccinated before the third and subsequent infections. When the usage of these control
strategies increases from 0.2 to 0.6, the number of vaccinated individuals also increases. However, after reaching
a certain point (when the control strategies usage increases from 0.8 to 0.9), the number of vaccinated individuals
starts to decrease after 2 months. This suggests that there may be an optimal range of control strategy usage for
maximizing the number of vaccinated individuals before the third and subsequent infections, and exceeding this
range could lead to a decline in vaccination rates.
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Figure 17: Trajectories for optimizing third and subsequent infection population control
Figure 17 suggests that when the control strategies mentioned earlier are consistently applied, the proportion of
individuals experiencing a third or subsequent infection with rotavirus decreases. In simpler terms, by following
the recommended actions such as vaccination, isolation, medical care, infection control measures, and immunity
monitoring, the incidence of repeated rotavirus infections is reduced. This indicates the effectiveness of these
control strategies in preventing multiple infections and improving overall public health outcomes.
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Figure 18: Trajectories for optimizing third and subsequent infection requiring hospitalization control
Figure 18 suggests that as the utilization of the control strategies outlined for rotavirus increases, the number of
individuals who are hospitalized after their third and subsequent infections also increases. In other words, there
seems to be a correlation between the implementation of these control measures and a rise in hospitalizations for
individuals experiencing their third or subsequent infections with rotavirus. This correlation is depicted in Figure
18.
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Figure 19: Trajectories for optimizing recovered from the second and subsequent
infection control

Figure 19 suggests that as the utilization of the specified control strategies increases, the number of individuals
who have recovered from the third and subsequent infections with rotavirus also increases, as indicated in Figure
19. In simpler terms, by implementing these control measures effectively, there is a positive correlation with a
higher

Conclusion

Results in Figures 4 to 19 provide a comprehensive overview of the impact of various control strategies on
rotavirus infections. For instance, effective implementation of control strategies - prenatal education, vaccination,
isolation, medical care, infection control, and immunity monitoring - is associated with increased maternal
immunity (Figure 4) and reduced incidence of initial rotavirus infections (Figure 7). These findings underscore
the importance of a well-considered approach to control strategies for rotavirus infections. Striking a balance in
their implementation, monitoring, and adaptation to changing circumstances can lead to improved immunity,
reduced infection rates, and better health outcomes for affected individuals and communities.
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