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Abstract  

A mathematical analysis of a malaria transmission model was carried out. The model which is a system of five 

ordinary differential equations is guided by the following assumptions: mosquitoes do not recover from malaria. 

The rate at which infectious humans enter the recovered group is proportional to the number of infections; a human 

or mosquito can die naturally at any stage; The number of infected humans increases at a rate which is proportional 

to the rate of susceptible humans.  The existence and uniqueness of the solution of the model were established. 

The basic reproduction number of the model was calculated and it is less than 1. The stability of the disease-free 

equilibrium point of the model showed that the model was asymptotically stable indicating that in time malaria 

disease will completely die out. It was recommended that: the use of active drugs, use of insecticide, use of 

mosquito bed-treated nets and regular education of the public by the government on malaria would help in 

controlling the transmission of malaria since there is currently no perfect vaccine against malaria in humans. 

Keywords: Asymptotic stability, basic reproduction number, disease-free equilibrium. 

 

Introduction  

Over the years, malaria has remained a deadly disease of serious concern to many countries of the world. Although 

prevalent among tropical areas of the world such as Africa, Asia, South America, and the Eastern Mediterranean 

region, it is a life-threatening disease with over one hundred countries as its high endemic regions (Nadjm & 

Behrens, 2012). It is an aged-long vector-borne infectious disease caused by protozoan plasmodium. Malaria is 

transmitted between humans through a bite by an infected female anopheles mosquito (the malaria vector). 

Different species of protozoa are responsible for the transmission of malaria. These include plasmodium 

falciparum, plasmodium ovale, plasmodium malariae and plasmodium vivax. Among these species, plasmodium 

falciparum is recognised as the most dangerous to humans (Esteva et al., 2009).  In Africa and South East Asia, it 

has been observed that plasmodium falciparum is responsible for 80% of all cases of malaria and 90% of death 

(WHO Global Malaria Programme). Sadly, in 2008, malaria was a major public health challenge with countries 

declared endemic to the malaria disease. Malaria is prevalent in over 100 countries with approximately 216 million 

cases and 655,000 deaths in 2010 (Olanyi et al., 2018; WHO,2016). World health report indicated that there were 

243 million cases of malaria and nearly a million deaths –mainly of children below 5 years (WHO Global Malaria 

Programme; Mandal et al., 2011). 

 

In 2015, there was a global estimate of 214 million cases of malaria resulting in about 438,000 deaths (World 

Health Organization, 2016; Al-Rahman et al., 2017; Koutou et al., 2018). In 2018, the WHO Africa Region 

recorded 93% of cases of malaria and 94% of deaths due to malaria (Oke et al., 2020). WHO (2016), World 

Malaria Report revealed that there were 228 million cases of malaria in December 2019 compared with 231 

million cases in 2017. It was estimated that the number of deaths was 405,000 in 2018 compared with 416,000 

deaths in 2017 (Oke et al., 2020).  Malaria infection can result in serious health challenges that affect the brain, 

kidneys including other organs of the body. An individual bitten by an infected mosquito may after a few days 

possess symptoms like fever, pain and chills and sweats may develop (Tumwiine et al., 2005b cited in Oguntolu 

and Gbolarin, 2019). Malaria is worse with HIV patients as it weakens their immune system thereby making them 

more vulnerable to contracting the disease. For severe HIV patients, malaria increases mortality by a factor of 

about 25% in non-stable malaria areas and is the fifth cause of death resulting from infectious disease worldwide 

after tuberculosis, respiratory infections, HIV/AIDS, and diarrheal diseases (Osman et al., 2017). 
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Apart from health-related challenges, malaria poses a huge economic threat to malaria-endemic nations. In Africa 

alone, the annual economic burden of malaria was estimated to be $8 billion (Oke et al., 2020). The impact of 

malaria infection is not only economic but also social. For example, it keeps children away from school and adults 

away from work. The cost of treatment of malaria is often very expensive for parents and drives financially 

disadvantaged families into extreme poverty. The national economic loss due to malaria disease is great, 

cementing poverty and underdevelopment, especially in low-income countries (WHO, 2016). 

Currently, there is no perfect vaccine for the treatment of malaria in humans (although global efforts are underway 

to develop such a vaccine). However, to control the spread of malaria, preventive measures can be taken. Such 

measures include: the use of mosquito-reduction strategies; self-protection from mosquito bites through the use 

of insecticide-treated bed nets; intermittent preventive personal treatment against malaria; reduction of malaria 

population through the destruction of their breeding sites etc. Other intervention strategies may include the use of 

indoor residual spraying for killing infected indoor mosquitoes, the use of anti-malaria drugs to regulate malaria 

and the use of sterile insect techniques. 

 

Several mathematical models have been developed to investigate the dynamics of the transmission of malaria. 

Foremost of these models is that by Ross who developed a simple SIS (Susceptible-Infected-Susceptible) model 

with the assumption that at any time, the total population can be divided into distinct compartments. Using the 

model, Ross showed that bringing a mosquito population below a certain threshold was necessary to eliminate 

malaria. According to Ross, the threshold naturally depends on biological factors such as the bit ingrate and 

vectorial capacity. To estimate the rates of infection and recovery of malaria disease, Macdonald developed a 

model in which he assumed that the amount of infective material to which a population is exposed is not changed. 

The model showed that reducing the number of mosquitoes effectively has some effects on the spread and control 

of malaria in areas with the very great transmission. The Ross-Macdonald mathematical model comprises the 

interaction between infected human hosts and infected mosquitoes (vector). Oguntolu and Gbolarin (2019) 

proposed and analysed a mathematical model which describes the transmission dynamics of the malaria epidemic. 

Using the Differential Transform Method (DTM) which was validated by computer in-built classical fourth-order 

Runge-Kutta method, it was found that the solutions obtained with both methods were efficient, accurate and 

convergent. It was also found that the disease-free equilibrium point of the model was locally and globally 

asymptotically stable having a basic reproduction number Ro<1. Oke et al. (2020) proposed and analysed a 

mathematical model of malaria disease with a control strategy. In the study, the authors used a combination of 

two controls at a time while setting the other to zero, to investigate and compare the effects of the control strategies 

on malaria progression and eradication.  Using Pontryagin’s Maximum Principle and numerical simulations, 

analysis of the optimal control problem indicated that the combination of the three control strategies may be 

adopted in controlling malaria disease among the human and mosquito interacting populations. Numerical results 

revealed that the combination of the three control strategies: medication, use of treated bed nets and use of 

insecticide spray, have the highest impact on the control of malaria disease.  Following was the combination of 

medication and the use of insecticide among the human population and lastly the combination involving the use 

of treated bed nets and use of an insecticide. Al-Rahman et al. (2017), considered SEIR-SEI model of malaria 

transmission between humans and mosquitoes. With the SEIR model, the authors estimated the basic reproduction 

number and discussed the disease-free and endemic equilibria using the Routh-Hurwitz criterion and second 

additive compound matrix respectively. Global stability of the disease-free and endemic equilibrium points was 

established using Lasselle’s invariance principle of Lyapunov functions. The analytical and numerical simulation 

of the model indicated that malaria disease may be controlled by reducing the rate of contact between humans and 

mosquitoes. Further, it was found that the use of effective malaria drugs, insecticides and mosquito-treated nets 

are necessary measures to reduce the mosquito population and spread of malaria disease.  

 

Koutou et al. (2018), examined the malaria transmission model in which the immature stages of the vector (malaria 

disease carrier) were taken into account. In the study, two models were considered namely: a model of vector 

population and a model of virus transmission. Using Lyapunov function, the authors showed using mathematical 

proof that the endemic equilibrium of the model was globally asymptotically stable. Theoretical results supported 

by numerical simulation indicated that the effect of immature stages is very important in the spread of mosquito 

population and that management of malaria disease is concerned first by reducing the mosquito threshold 

parameters to a value less than one. Baihaqi and Adi-Kusumo (2020), studied a mathematical model of malaria 

disease in the human population that can relapse without any contact with mosquitoes. The model was a 5-

dimensional system of first-order ordinary differential equations with five variables S, E, I, R, Sp. The analysis of 

the model showed that there was the existence of an endemic equilibrium point indicating that the disease cannot 
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be removed from the population but the number of infected individuals can still be isolated into a certain value. 

Tumwiine, et al. (2005a), proposed and analysed a mathematical model for the dynamics of malaria within human 

hosts and mosquitoes in which the reservoir of the susceptible human hosts is refilled by immunity loss to the 

disease and newborns. The model was reformulated in terms of the proportions of the classes of the respective 

populations. It was found that the basic reproduction number was independent of the rate of loss of immunity and 

that the disease-free equilibrium point of the model was globally asymptotically stable. Also, it was found that 

since malaria-induced immunity wanes over time and there are no effective vaccines against malaria at moment, 

intervention strategies such as the use of effective drugs, treated bed nets and insecticides would reduce the 

mosquito population and hence reduce contact between malaria vector and the human host. 

 

Model Description  
At any time t under consideration, the population of the malaria transmission model is divided into five 

compartments, namely: susceptible humans (S), infected humans (I), recovered humans (R), susceptible 

mosquitoes (V1) and infected mosquitoes (V2). 

 

Model Assumptions  

a) Mosquitoes do not recover from malaria, and the recovered humans do not enter the susceptible group 

again. 

b) The rate at which infectious humans enter the recovered compartment is proportional to the number of 

infections. 

c) The number of infected humans increases at a rate proportional to both the number of infectious humans 

and the number of susceptible humans. 

d) A human or mosquito can die naturally at any stage. 

 

 Model Formulation 

Following Oguntola and Gbolarin (2019), the description of malaria transmission dynamics is given by the 

following differential equations: 

 
𝑑𝑆

𝑑𝑡
= ˄h - ᵝh(1-θ)SV2   - 𝜇hS                                                             (1) 

 
𝑑𝐼

𝑑𝑡
  =  ᵝh(1-θ)SV2 - 𝛿hI – 𝛾hI -  𝜇hI                                                                  (2) 

 
𝑑𝑅

𝑑𝑡
  =  𝛾hI - 𝜇hR                                                                                               (3) 

𝑑𝑉1

𝑑𝑡
  = ˄v - ᵝvV1I – -𝜇vV1                                                                                  (4) 

 
𝑑𝑉2

𝑑𝑡
  =  ᵝvV1I – -𝜇vV2                                                                                        (5)  

 

with S(0) =60>0, I(0)=40>0, R(0)=20>0,V1=100>0 and V2(0)=60>0               (6)  

and   N(t) = S(t) + I (t) + R (t)+ V1(t)+V2(t)                                                      (7)  

 

where: ˄h is per capita birth rate of the human population per time, θ is the control parameter, 𝜇h is the natural 

death rate of the human population per time, ᵝh is the human contact rate per time, 𝛾h is the recovered rate of 

humans per time, 𝛿h is induced death rate for humans, ᵝv is mosquitoes contact rate per time, ˄v is per capita birth 

rate of mosquito population per time and 𝜇v is the natural death rate of mosquito population per time. 

 

Table1: Model parameter values 

Parameter Value Source 

˄h 0.0013      Oguntola and Gbolarin 

(2018) 

θ 0.25                  ” 

𝜇v 0.00135                  ” 

ᵝh 0.0067                  ” 

𝑌h 0.5                  ” 

𝛿h 0.068                  ” 

ᵝv 0.0019                  ” 

˄v 0.05                  ” 

𝜇h 0.0029                  ” 
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3.  Method of Solution 

      3.1  Positivity of Solution 

In this section, we prove that the solution of the system of equations (1) – (5) with positive initial value will remain 

positive for all time (t).  

 

 

 
 

 

then the solution [S(t), I(t), R(t), V1(t), V2(t) ] of the system of differential equations (1) –(5) is positive for all 

time t ≥0. In equation (1) above,  

 
𝑑𝑆

𝑑𝑡
  =  ˄h- ᵝv(1- θ)SV2𝜇h -𝜇hS 

In the absence of infected mosquitoes,  
𝑑𝑆

𝑑𝑡
   =  ˄h - 𝜇hS. 

By separation of variables, we have  
𝑑𝑆

𝑆
  + 𝜇hS  = ˄h                                    (9)  

Solving the first-order differential equation (9) by the method of integrating factor I.F, we have 

I.F =  𝑒∫𝜇ℎ𝑡 =  𝑒𝜇ℎ𝑡 
𝑑

𝑑𝑡
[𝑆( 𝑒𝜇ℎ𝑡)] = ˄h𝑒𝜇ℎ𝑡 

𝑆( 𝑒𝜇ℎ𝑡) =  ∫ ˄ℎ𝑒𝜇ℎ𝑡𝑑𝑡 

𝑆𝑒𝜇ℎ𝑡 =  
˄ℎ𝑒𝜇ℎ𝑡

𝜇ℎ
  + c  

S(t)  =  
˄ℎ

𝜇ℎ
  + c𝑒−𝜇ℎ𝑡                                                                                    (10) 

At t = 0, then S(0) =  
˄ℎ

𝜇ℎ
  + c 

S0 = 
˄ℎ

𝜇ℎ
  + c  

 S0 - 
˄ℎ

𝜇ℎ
  =  c                                                                                                 (11)                                                                      

Substituting (11) into (10), we have 

S(t)  =  
˄ℎ

𝜇ℎ
 + (S0 - 

˄ℎ

𝜇ℎ
 ) 𝑒−𝜇ℎ𝑡                                                                        (12)   

Similarly,  I(t) > 0, R(t) > 0, V1 > 0, and V2 > 0                                          (13)       

Equations (12) and (13) show that the solution [S(t), I(t), R(t), V1(t), V2(t)] of the system of differential 

equations (1) – (5) is positive for all t ≥ 0. 

 

 

Existence and Uniqueness of Solution of Differential Equations 1-5  
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Theorem: Given the differential equation 
𝑑𝑦

𝑑𝑡
 + P(t)y = g(t), if the functions p and g are continuous within an 

open interval I: 𝛼<t<𝛽 containing the point t=t0, then there is a unique function y = ϕ(t) that satisfies the 

differential equation  

 
𝑑𝑦

𝑑𝑡
 + p(t)y = g(t)                                                                                              (14)  

for every t in I, and that also satisfies the condition y(t0) = y0                                     (15)  

where y0 is an arbitrary initial value. 

Proof: Let ϕ(t) = S(t) + I(t) + R(t) and then φ(t) = V1(t) + V2(t)                                    (16)  

ϕ(t)  = ˄h - βh(1-θ)SV2 - µhS+βh(1-θ)SV2- 𝛿hI – γhI - µhI + γhI - 𝜇hR   
ϕ(t)   = ˄h - µhS - 𝛿hI - µhI - µhR 

 If 𝛿h = 0, then 

ϕ(t) = ˄h -  𝜇h(S+I+R) 
𝑑

𝑑𝑡
ϕ(t)  =  ˄h – 𝜇h  ϕ(t) 

𝑑

𝑑𝑡
ϕ(t) + 𝜇hϕ(t)  =  ˄h                                                                                                         (17) 

Observe that equations (14) and (17) are similar and are first-order linear differential equations. Solving 

equation (17) by the method of integrating factor (I.F), we have  

I.F = 𝑒∫𝜇ℎ𝑑𝑡  =  𝑒𝜇ℎ𝑡  

𝑑

𝑑𝑡
 [𝜙(𝑡)𝑒𝜇ℎ𝑡  ]  = ˄h𝑒𝜇ℎ𝑡 

Integrating both sides of the equation, we have  

 ϕ(t) 𝑒𝜇ℎ𝑡  = ∫˄ℎ 𝑒𝜇ℎ𝑡 

ϕ(t) 𝑒𝜇ℎ𝑡 =  
˄ℎ

𝜇ℎ
𝑒𝜇ℎ𝑡 + c 

ϕ(t)  =   
˄ℎ

𝜇ℎ
 + c𝑒−𝜇ℎ𝑡                                                                                     (18)  

Equation (18) is the general solution of equation (17). At the initial point when t = 0, then  

 ϕ(0) =  S(0) + I(0) + R(0) = S0 + I0+ R0  =  ϕ0                                                                  (19)  

Substituting equation (19), into equation (18), we have 

 

ϕ(0) - ˄h  =  c                                                                                                     (20) 

          µh 

Rewriting equation (18) by substituting the value of c as in equation (20), we have 

 

ϕ(t)  =      
˄ℎ

𝜇ℎ
   + [ϕ0  -  

˄ℎ

𝜇ℎ
 ]𝑒−𝜇ℎ𝑡                                                                                           (21) 

 

Similarly,  

 

φ(t)  =    
˄𝑣

𝜇𝑣
  +  [φo  -  

˄𝑣

𝜇𝑣
 ]𝑒−𝜇ℎ𝑡                                                                                           (22)          

 

Substituting equations (18) and (19) into equation (16), we have 

 

S(t  =   [ 
˄ℎ

𝜇ℎ
 +  [𝜙0  −   

˄ℎ

𝜇ℎ
 ]𝑒−𝜇ℎ𝑡]  –  [I(t) + R(t)]                                                               (23)  

 

I(t)  =  [ 
˄ℎ

𝜇ℎ
 +   [𝜙0  −   

˄ℎ

𝜇ℎ
 ]𝑒−𝜇ℎ𝑡]  –  [S(t) + R(t)]                                                             (24) 

 

R(t)  = [ 
˄ℎ

𝜇ℎ
 +  [𝜙0  −   

˄ℎ

𝜇ℎ
 ]𝑒−𝜇ℎ𝑡]  –  [S(t) + I(t)]                                                               (25) 

 

V1(t)  =  [
˄𝑣

𝜇𝑣
  +   (𝜑𝑜  −   

˄𝑣

𝜇𝑣
 )𝑒−𝜇ℎ𝑡]  – V2(t)                                                          (26) 

V2(t)  =  [
˄𝑣

𝜇𝑣
  +   [𝜑𝑜  −   

˄𝑣

𝜇𝑣
 ]𝑒−𝜇ℎ𝑡]  – V1(t)                                                                       (27) 

 

Equations (21) – (27) show that there is a unique solution of the system of differential equations (1) – (5). Hence, 

the theorem has been proven. 
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Basic Reproduction Number (R0) of the Malaria Transmission Model.  

The basic reproduction number, (R0) is the expected number of secondary cases of infection brought about by a 

single (typical) infection in a completely susceptible population. To calculate R0 of the system of differential 

equations (1) – (5), we use the next generation matrix denoted G. The matrix G consists of two matrices F and V 

defined as: 

 

F  = (
0 𝛽ℎ(1 − 𝜃)𝑆

ᵝ𝑣𝑉1 0
) and V = (

𝛿ℎ + 𝛾ℎ +  µℎ 0
0 𝜇𝑣

)                                      (28)  

 

with  V-1 =  (

1

𝛿ℎ+𝛾ℎ+ µℎ 
0

0
1

𝜇𝑣

)                                                                                      (29)  

where F represents the matrix of new infections while matrix V transfers infections from one compartment to 

another and G = FV-1. 

G = FV-1 =  (
0 𝛽ℎ(1 − 𝜃)𝑆

𝛽𝑣𝑉1

𝛿ℎ+𝛾ℎ+ µℎ
0

)                                                                    (30) 

But at disease-free equilibrium, I(t) = 0, S = 
˄ℎ

𝜇ℎ
 and V1 =  

˄𝑣

𝜇𝑣
                                    (31) 

Substituting equation (31) into equation (30) we have 

G  =  FV-1  =  (
0

𝛬ℎ𝛽ℎ(1−𝜃)

𝜇ℎ𝜇𝑣

𝛽𝑣𝛬𝑣

(𝛿ℎ+𝛾ℎ+ µℎ)𝜇𝑣
0

)                                                                 (32) 

The basic reproduction number of the model equations (1) – (5) is the dominant eigenvalue or the spectral radius 

of the matrix G. Therefore, 

R0 = √
𝛬ℎ𝛬𝑣𝛽ℎ𝛽𝑣(1−𝜃)

(𝛿ℎ+𝛾ℎ+𝜇ℎ)𝜇ℎ 𝜇𝑣2
                                                                                                                                                 (33)                                                                                                                     

 

Stability Analysis of Disease–Free Equilibrium (DFE) Point E0.  

In this section, we qualitatively analyse the model equations (1) – (5) to investigate the existence and stability of 

its associated equilibria. Point E0 is the steady state solution of the model equations (1) – (5) in the absence of 

infection. To establish the stability of E0, the Jacobian matrix of the differential equations (1) – (5) is computed 

and evaluated based on the signs of the eigenvalues of the Jacobian matrix. Point E0 is locally stable if the real 

parts of the eigenvalues are all negative and unstable if all the eigenvalues are not negative. 

 

Local Stability of Disease-Free Equilibrium Point (E0) 

Lemma:The point E0 of the model equations (1) – (5) is locally asymptotically stable if Ro <1 and unstable if 

Ro>1. 

Proof: Let G1 = 
dS

dt
 , G2 = 

𝑑𝐼

𝑑𝑡
, G3 = 

dR

dt
, G4 = 

dv

dt
 and G5 = 

dv2

dt
. 

At the steady states of the model equations (1) – (5), the Jacobian matrix is  

           J(E0)  =  

(

 
 
 
 
 

𝜕𝐺1

𝜕𝑆 
    
𝜕𝐺1

𝜕𝐼
    
𝜕𝐺1

𝜕𝑅
    
𝜕𝐺1

𝜕𝑉1
    
𝜕𝐺1

𝜕𝑉2
𝜕𝐺2

𝜕𝑆
    
𝜕𝐺2

𝜕𝐼
    
𝜕𝐺2

𝜕𝑅
    
𝜕𝐺2

𝜕𝑉1
    
𝜕𝐺2

𝜕𝑉2
𝜕𝐺3

𝜕𝑆
    
𝜕𝐺3

𝜕𝐼
    
𝜕𝐺3

𝜕𝑅
    
𝜕𝐺3

𝜕𝑉1
    
𝜕𝐺3

𝜕𝑉2
𝜕𝐺4

𝜕𝑆
    
𝜕𝐺4

𝜕𝐼
    
𝜕𝐺4

𝜕𝑅
    
𝜕𝐺4

𝜕𝑉1
    
𝜕𝐺4

𝜕𝑉2
𝜕𝐺5

𝜕𝑆
    
𝜕𝐺5

𝜕𝐼
    
𝜕𝐺5

𝜕𝑅
    
𝜕𝐺5

𝜕𝑉1
    
𝜕𝐺5

𝜕𝑉2)

 
 
 
 
 

                                                                  (34) 
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J(E0) = 

(

 
 
 
 
 
 

 

−[𝛽ℎ(1 − 𝜃)𝑉2 + µℎ]                 0                 0           0            − 𝛽ℎ(1 − 𝜃)𝑆 

𝛽ℎ(1 − 𝜃)𝑉2         − (𝛿ℎ + 𝛾ℎ +  µℎ)     0           0            𝛽ℎ(1 − 𝜃)𝑆   
    0                                     𝛾ℎ               − µℎ          0                     0       

0                                    − ᵝ𝑣𝑉1            0 − (ᵝ𝑣𝐼 + 𝜇𝑣)        0  

             0                                   ᵝ𝑣𝑉1                  0       ᵝ𝑣𝐼                  − 𝜇𝑣           
       
 
 )

 
 
 
 
 
 

    (35) 

By evaluating the Jacobian matrix (35) at the point E0, we have 

  J(E0)  =  

(

 
 
 
 
 

 

− µℎ                                   0                     0              0    − 𝛽ℎ(1 − 𝜃)𝑆 

       0                       − (𝛿ℎ + 𝛾ℎ +  µℎ)   0              0          𝛽ℎ(1 − 𝜃)𝑆   
0                                        𝛾ℎ            − µℎ           0                  0       

     0                                        0                    0        − 𝜇𝑣                0           
       0                                         0                   0             0             − 𝜇𝑣           

       
 
 )

 
 
 
 
 

       (36) 

By applying matrix row operation, the matrix (36) becomes 

 

 

 

 

 

J(E0)  =               (37)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic equation of the Jacobian matrix (37) is  

 

 

 

 

[J- 𝜆𝐼]  =     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-𝝁h 0 0 0 -βh(1- 𝛉)S 

0   -(𝛿h +𝛾h+𝜇h) 0 0 - βh(1- 𝛉)S                                                    

0 0 -𝜇h 0 
𝛽ℎ𝛾ℎ(1−𝜃 )𝑆

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

0 0 0 -µv 
𝛽ℎ𝛾ℎ(1−𝜃 )𝑆

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

0 0 0 0 
[𝛽ℎ𝛽ℎ(1−𝜃 )𝑠𝑉1−𝜇ℎ𝜇𝑣−𝜇𝑣𝑆ℎ−𝜇𝑣𝛾ℎ

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

 

 

 

 

 

-𝝁h- λ 1 0                   0             0 -βh(1- 𝛉)S 

0     -(h+𝛾h+𝜇h)- λ 2   0             0             βh(1- 𝛉)S 

0 0        -𝜇h- λ 3 0 
−𝛽ℎ𝛾ℎ(1−𝜃 )𝑠

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

0 0           0          -µv- λ4  
𝛽ℎ𝛾ℎ(1−𝜃 )𝑠

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

0 0            0       0             
[𝛽ℎ𝛽ℎ(1−𝜃 )𝑠𝑉1−𝜇ℎ𝜇𝑣−𝜇𝑣𝑆ℎ−𝜇𝑣𝛾ℎ]−𝜆5

𝑆ℎ+𝛾ℎ+𝜇ℎ
 

(38) 
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The eigenvalues of the characteristic equation are:  

λ1  =  -𝜇h <  0                                                                                             (39) 

λ2  =  -(Sh+𝛾h + 𝜇h) <  0                                                                                            (40) 

λ3  =  - 𝜇h  <  0                                                                                                           (41) 

λ4  =  - 𝜇h  <  0                                                                                             (42) 

λ5  =  - 
[𝛽ℎ𝛽𝑣(1−Ө)𝑆𝑉1−𝜇ℎ𝜇𝑣−𝜇𝑣𝑆ℎ−𝜇𝑣𝛾ℎ]

𝑆ℎ+𝛾ℎ+𝜇ℎ
 < 0                                                                   (43) 

From equation (40), we see that  

βhβv(1- 𝜃)SV – (𝜇ℎ + 𝑆ℎ + 𝛾ℎ)𝜇v < O 
𝛽ℎ𝛽𝑣(1−𝜃)𝑆𝑉1

(𝜇ℎ+𝑆ℎ+𝛾ℎ)𝜇𝑣
 − 1  <   0  

𝛽ℎ𝛽𝑣(1−𝜃 )𝑆𝑉1    

(𝛿ℎ+𝛾ℎ+𝜇ℎ)𝜇𝑣
  <   1                                                                                             (44) 

Substituting equation (31) into equation (44), we have 
𝛬1𝛬𝑣𝛽ℎ𝛽𝑣(1−𝜃 )

(𝛿ℎ+𝛾ℎ+𝜇ℎ )𝜇𝑣𝜇𝑣
2  <  1 

√
𝛬ℎ 𝛬𝑣 𝛽ℎ𝛽𝑣(1−𝜃 )

(𝛿ℎ+𝛾ℎ+𝜇ℎ )𝜇ℎ𝜇𝑣
2  <  1 

 R0  <  1                                                                                                                         (45) 

Since λ1 < 0, λ2 < 0, λ3 < 0, λ4 < 0, and λ5 < 0 and R0 < 1, then the disease – free equilibrium point E0 is locally 

asymptotically stable. 

 

Global Stability of Disease – Free Equilibrium Point (E0)  

Lemma: The point E0 of the model system of differential equations (1) – (5) is globally asymptotically stable if 

R0 ≤ 1. 

Proof: Consider the Lyapunov-Lasalle function 

L(S,I,R,V1,V2) = ˄vβv𝝁hI + (𝛅h+𝛾h+𝜇h) 𝜇h 𝜇vV2                                                        (46) 

Differentiating equation (43), we have 
𝑑𝐿

𝑑𝑡
  =  ˄vβv𝝁

𝑑𝐼

𝑑𝑡
 + (𝛅h+𝛾h+𝜇h) 𝜇h 𝜇v

𝑑𝑉2

𝑑𝑡
 

     =   ˄vβv𝝁h[βv(1-Ө) 𝛅V2 – (𝛅h+𝛾h+𝜇h) I] + (𝛅h+𝛾h+𝜇h) 𝜇h 𝜇v (βvV1I- 𝜇vV2)  (47) 

Since S ≤ S0, I ≤ I0, R ≤ R0 and V1 ≤ V1
0, then equation (44) becomes 

𝑑𝐿

𝑑𝑡
  ≤  [

𝛬ℎ 𝛬𝑣𝛽ℎ 𝛽𝑣 (1−0)

(𝛿ℎ+𝛾ℎ+𝜇ℎ)𝜇ℎ 𝜇𝑣2
 − 1 ]V2 

𝑑𝐿

𝑑𝑡
 ≤ (Ro

2 - 1)V2 

If 
𝑑𝐿

𝑑𝑡
 ≤ O,  then R0

2 -  1 ≤ 0 

Ro
2 ≤ 1                                                                                                                       (48) 

Equation (48) shows that the disease-free equilibrium point E0 is globally asymptotically stable. 

 

Result 

In equation (33) above, R0 = √
𝛬ℎ𝛬𝑣𝛽ℎ𝛽𝑣(1−𝜃 )

(𝛿ℎ+𝛾ℎ+𝜇ℎ)𝜇ℎ 𝜇𝑣2
 . By substituting the model parameter values: ˄h = 0.0013, ˄v = 

0.00135, βh = 0.0067, βv = 0.0019, 𝛉 = 0.25, 𝛅h = 0.068, 𝛾h = 0.5,  𝜇h  = 0.0029 and 𝜇v  = 0.00135 as given in table 

1, we have 

R0 = 0.4535 < 1  

 

Discussion of Findings 

The result R0 = 0.4535 < 1 verifies the mathematical proof of equation (33). It shows that the disease–free 

equilibrium point E0 of the system of differential equations (1) – (5) is stable that is, malaria will in time die out.  

 

Conclusion  

This paper examined an SIR mathematical model which describes the dynamics of the transmission of malaria in 

a given population. The model which is a deterministic system of non-linear ordinary differential equations was 

analysed to determine the possibility of the eradication of malaria. The basic reproduction number of the model 

was calculated and the value is less than 1. The eigenvalues of the  Jacobian matrix of the disease-free equilibrium 
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point were all negative indicating that the disease-free equilibrium point is asymptotically stable. This shows that 

malaria will in time die out. 

 

Recommendations 

To help control the transmission of malaria, the following measures would prove helpful. 

i   Use active malaria drugs 

ii  Use of insecticide 

iii  Use of malaria bed-treated nets 

iv   Regular education of the public by the government on malaria.  
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