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Abstract  

Utilizing the primary crude oil markets of Average, Brent, Dubai and West Texas Intermediate from 1982 to 2023, 

this research aim to estimate the Multivariate VECH between returns on Average, Brent, Dubai, and WTI crude oil 

price to see how the conditional covariance matrix of the crude oil market variables have a flexible dynamic structure, 

report time-varying covariance and impact of lagged shocks on conditional volatility and select the appropriate model 

to model the energy markets. After preliminary investigation have been conducted, like the time graph to determine 

trend in the evolution of the series, Augmented Dickey-Fuller test to ascertain unit root and logarithmic return for 

stability, the Multivariate Vector Error Conditional Heteroskedasticity (MVECH) and Diagonal Conditional 

Correlation (DCC) models were applied to the study variables. The findings demonstrate that the "positive 

semidefinite" property is satisfied by the diagonal multivariate VECH model as the estimates on the leading diagonal 

of the variance-covariance matrix are positive, it may be inferred that the variables are traveling in the same direction. 

Also, each asset in the portfolio exhibits time-varying volatility as captured by the significant ARCH and GARCH 

coefficients. Market returns and crude oil prices exhibit time-dependent oscillations, according to the Diagonal 

Conditional Correlation (DCC). By applying the DCC-GARCH's constant conditional correlation to the relationship 

between Dubai raw prices and Brent, Average and West Texas Intermediate, the impact of lagged shocks on the 

conditional variance was statistically significant. According to the model selection approach that use the Akaike 

information criterion (AIC), the Diagonal Conditional Correlation (DCC) model performs better than the Diagonal 

Multivariate VECH model. All sufficiency tests also show that the model is adequate. Since crude oil market factors 

such as time-varying covariance, and volatility imbalance are interdependent, it is necessary to use a multivariate 

GARCH Model to assess the advantages of this dependency. Some recommendations were proffered. 
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Introduction 

Econometric modeling of financial markets has long recognized the dynamic nature of asset returns, particularly their 

time-varying volatility and correlations. In the context of crude oil markets, understanding these dynamics is crucial 

for risk management, portfolio diversification, and pricing of energy derivatives. The inherent complexities of oil 

prices, influenced by geopolitical events, supply-demand imbalances, and speculative activities, necessitate 

sophisticated statistical tools to capture their evolving interdependencies. This introduction sets the stage for an in-

depth analysis of time varying covariance and volatility dynamics in major crude oil markets, employing the 

multivariate Vector Error Conditional Heteroskedasticity (MVECH) and the Diagonal Conditional Correlation (DCC) 

model. According to Zhang (2013), key crude oil benchmarks, such as Crude Oil Average (a composite index 

representing global average or specific blend), West Texas Intermediate (US crude), Crude Oil Brent (North Sea), 

Dubai crude oil benchmark (middle East), exhibit distinct characteristics and are influenced by regional and global 

factors leading to varying level of volatility and interconnectedness. Bollerslev (1990) used Vector Error Conditional 

Heteroskedasticity (VECH) model to allow the conditional covariance matrix of the dependent variable to follow an 

http://www.fnasjournals.com/
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elastic dynamic structure. These methodologies offer robust frameworks for uncovering the intricate relationships 

among different crude oil bench marks, providing valuable insight into market behavior and potential opportunities 

for hedging and arbitrage. Ejukwa and Tuaneh (2025), examine volatility contagion in the crude oil market to assess 

how the association between benchmark crude oil prices evolve over time. The BEKK model along with the constant 

conditional correlation model was deployed. Findings show that the historical conditional volatility and squared error 

had substantial impact on the conditional variance. Bollerslev (1986) in his work Generalized Autoregressive 

Conditional Heteroskedasticity introduced the GARCH model, extending ARCH to allow for more flexible and 

persistent volatility dynamics. Nomikos and Voukelatos (2014) examined dynamic volatility and correlation of crude 

oil spot and futures market offering insight into the relationship between spot and futures prices. Engle (2002) in his 

study, dynamic conditional correlation: A simple way to estimate varying correlations, presents the DCC model, a 

widely used and computationally efficient approach for estimating time-varying conditional correlations. Existing 

literature utilize GARCH-type models to capture time-varying volatility in financial assets, including crude oil. 

Univariate GARCH models provide insights into individual volatility of each crude oil series, while multivariate 

GARCH models such as the Diagonal BEKK and Constant Conditional Correlation models (CCC) have been 

employed to analyze volatility transmission and co-movement among crude oil prices. However, while these models 

offer valuable insight into static and time-varying volatilities and correlation, a comprehensive examination of the 

dynamic and evolving covariance structures among a diverse set of globally significant crude oil benchmarks –Crude 

Oil Average, Crude Oil Brent, Crude Oil Dubai and West Texas Intermediate – using advanced multivariate GARCH 

specifications remains an area with scope for deeper investigation. While some studies have used DCC-GARCH to 

investigate relationships between crude oil and other markets and others have examined volatility spillovers between 

a subset of these crude oil benchmarks, there is a gap in a detailed and comprehensive analysis of time-varying 

covariance and volatility dynamics across all four major crude oil benchmarks simultaneously using both MVECH 

and DCC models. This research seeks to bridge this gap by providing a nuanced understanding of how the 

interdependencies and volatility characteristics of these crude oil market evolves over time. 

 

Statement of the Problem 

This study examines the main crude oil markets through the lens of the multivariate GARCH model in order to 

ascertain averages, evolving correlations, and volatility transmission. Contradictory results have been produced by 

several GARCH model examinations of the crude oil market. Many hypotheses seek to clarify the discrepancy between 

the ability of random volatility to explain returns and the ability of trends or moving averages to do so. Two variables 

show the unequal effects when two or more potentially incorrect financial time series change at the same time. To 

stabilize volatility, the GARCH model employs conditional variables and historical returns. Optimal models for 

multivariate GARCH calculations and future fluctuation predictions do not yet exist, according to Serletis and Elder 

(2011). Many essential goods are influenced by oil prices. As important as risk assessment is for investors to make 

informed decisions, price forecasting is as crucial. An abrupt drop in output happens if oil prices abruptly rise or fall, 

say Serletis and Elder (2011). Maximizing earnings while minimizing risk should be an investor's purpose. Estimating 

and predicting Value at Risk (VaR) is a good fit for GARCH models. Few studies have made use of the multivariate 

GARCH model and variance prediction using the same variables. This research found that the world's biggest crude 

oil markets had notoriously difficult-to-model mean volatility, time-varying covariance and conditional correlation. 

However, multivariate GARCH models like the VECH, the DCC and other risk model prediction methods have been 

introduced that account for different distributions. The results of this research could be useful for students, 

entrepreneurs, professors, and others in positions of power. As they consider new laws and regulations, lawmakers 

may use this study as a resource for a deeper grasp of the market's inner workings. 

 

Aim of the Study 

This study utilizes the multivariate GARCH Model to model four most significant crude oil markets' time-varying 

covariance, and conditional volatility. 

 

Objectives of the Study 

The objectives include to; 

i. Find the dynamic structure of the variables' conditional covariance matrices in the crude oil market by estimating 

the multivariate VECH between the returns on Average, Brent, Dubai, and WTI crude oil prices. 

ii. Investigate the impact of lagged shocks on volatility in the four crude oil markets and how long they last. 
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iii. Investigate the conditional correlation between the Crude Oil Average, Crude Oil Brent, Crude Oil Dubai and West 

Texas Intermediate crude oil market. 

iv. Select the MGARCH model that best matches the simulations of the crude oil market under review. 

Scope of the Study 

In order to determine time-varying covariance, and persistence of shocks on volatility of crude oil benchmarks using 

multivariate GARCH Model, the scope covers the use of Vector Error Conditional Heteroskedasticity (VECH-

GARCH) and Diagonal Conditional Correlation (DCC) models. The study mainly takes into account four metrics: 

Crude Oil Average, Crude Oil Brent, Crude Oil Dubai and West Texas Intermediate ranging from January,1982 to 

April, 2023. One standard used in the crude oil market is the benchmark crude, often called a marking crude.  

 

Materials and Method 

Source of Data  

Our data set includes monthly Brent, Average, Dubai and West Texas Intermediate crude oil prices sourced from the 

Central Bank of Nigeria (CBN) website (www.cbn.gov.ng). The data covers the period from January 1982 to April 

2023, encompassing 1984 observations. 

 

Software use for Data Analysis  

To analyze this data, EViews 13 was utilized. EViews is a versatile statistical software package that caters to 

researchers across disciplines. It is well suited for organizing, visualizing, and analyzing data trends and patterns. 

 

Preliminary Analysis  

This verifies the accuracy of the measurements, the validity of the analysis and the appropriateness of the assumptions 

underlying the analysis. This include checking for normality of the variable distribution, the absence of outliers and 

the suitability of the data to the proposed model. In addition, correlation analysis, descriptive statistics, the ARCH 

Effect, and logarithmic return and volatility estimations is dealt with. For the logarithmic return the data is fitted with 

a conditionally compound monthly return that is determined by the price of crude oil benchmark. A conditionally 

compound monthly return, calculated as;  
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is suited to the crude oil price, where t-1 represents one period lag on the price of crude oil, each of the four types of 

returns on crude oil prices at time t are represented by equation 1, 2, 3 and 4. The returns is done to achieve stationarity 

and make the series comparable across different time periods and assets with varying price levels.  

 

Time Plot 

A time plot provides a visual snapshot of how variables change over time making it an essential tool for understanding 

and analyzing time series data.  It detects anomalies like outliers or unusual data point, reveal patterns like seasonality 

or cyclical behavior. 

 

Descriptive Statistics  

The Jarque-Bera test as popularize by Ejukwa and Nanaka (2024) to test for normality and other features in the data 

set focuses on describing the main features and characteristics of the dataset without making any generalizations or 

inference to a larger population. The test statistics is presented as;  

http://www.cbn.gov.ng/


 

Time-Varying Covariance in Major Energy Portfolios 

34 Cite this article as:   

Ejukwa, J.O., & Essi, I. D. (2025). Time-varying covariance in major energy portfolios. FNAS Journal of Scientific Innovations, 

6(4), 31-44 

 

( )







 −
+

4

3

6

2

22 K
S

N
X                                        (5.0) 

The variable's magnitude is denoted by N, kurtosis by K, and skewness by S. 

  

Unit Root Test for Stationarity 

This statistical test is used to determine whether a time series variable is non-stationary and possesses a unit root. This 

test involves comparing the estimated coefficient of the lagged dependent variable in an autoregressive model to a 

critical value.  The Augmented Dickey-Fuller (ADF) and the Phillip Perron Test (PPT) was used in the analysis. 

Assuming a series moves randomly is the assumption of the unit root test. 

ttt ybY += −11     Random walk                                                (6.0) 

ttt ybbY ++= −110    Random walk with drift       (7.0) 

ttt tbybbY +++= − 2110   Random walk with drift and trend       (8.0) 

 

ARCH Effect  

This test is a statistical phenomenon that is used to evaluate whether the variance of a variable is not constant over 

time but rather depends on the size of its past shocks. This is a requirement for the use of Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) models The regression is then reported as follows;  


t
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2 ,...,                       (9.0)  

where; p ,...,1 are the regression coefficients and 𝛼0 the intercept. 

H0: ,,...,21 op ====    

The null hypothesis that there is no ARCH impact in the residuals.  

H0: op   ,...,21  
 

The alternative hypothesis that there is ARCH impact in the residuals. 

 

Optimal Lag Length Order  

The order of the VAR Lag Length is determined by the following criteria, as stated by Tuaneh (2018): (a) Final 

Predator Error (FPE), (b) Akaike Information Criteria (AIC), and (c) Hannan-Quinn Information Criteria (HQ). Due 

to its importance in determining the length, it was preserved for inclusion in the study despite its potential to diminish 

the model selection criteria. To fit a VAR model, the order of L must be between 0 and Lmax. While more degrees of 

freedom are provided by models with more delays, residue volatility may be enhanced in these models. You may use 

Information Criteria (IC) to find the "correct" amount of delays in a VAR(p) model, much as in a univariate AR(p) 

model.   
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Co-integration Test  

It is necessary to validate the existence of co-integrating interactions between the components in question. Two 

likelihood ratio tests yielded the following findings, which was used for this purpose: 
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It compares and contrasts two hypotheses: one says there is no co-integrating relationship and the other says otherwise. 

If two series are co-integrated and show a long-run relationship, then they are likely connected and can be combined 

linearly. While it is feasible that several data sets will eventually converge, unexpected events might change their 

present trajectories at any time.          

 

The Multivariate GARCH Model Specification 

Expanding univariate models into multivariate models can improve decision-making tools for value-at-risk (VaR) 

forecasting, hedging, portfolio selection, and asset pricing. This study emphasizes the diagonal VECH-GARCH 

model, and the Constant Conditional Correlation (GARCH) model. 

 

Vector Error Conditional Heteroskedasticity (VECH)-GARCH 

Bollerslev et al., (1988), used the Vector Error Conditional Heteroskedasticity (VECH) GARCH models to allow the 

conditional covariance matrix of the dependent variables to follow an elastic dynamic structure. All diagonal 

multivariate VECH models are "positive semi-definite," as declared by Brooks (2001). According to the results of 

variance-covariance or correlation matrix models, the series returns of a positive definite matrix must be equal and 

have zero variance, according to Deebom et al., (2020). In the case of the VECH, the conditional variance and 

covariance would each depend upon lagged values of all the variances and covariances and on lags of the squares of 

both error terms and their cross products. Suppose that there are four variables used in the model. The conditional 

covariance matrix denoted Ht, would be 4   4. Ht and VECH (Ht) are written in matrix form as thus:   

𝜎i,t 
2 = M(i) + A1(i) ∗ 𝜀1,𝑡−1

2  *(𝜀1,𝑡−1
2 )

1
+ B1(i) ∗ 𝜎1,t-1

2  ,  ),0(~/ 1 ttt HN−  (14.0)  

Where M(i) ,  A1(i),  and  B1(i) are parameters of an indefinite  matrix  
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The variance-covariance estimates of the Diagonal VECH Multivariate GARCH model in Equation form: 

𝜎1,𝑡
2 = 𝑀(1,1) + 𝐴1(1,1)𝜀𝑖,𝑡−1

2 + 𝐵1(1,1)𝜎𝑖,𝑡−1
2                                                      (14.1) 

𝜎2,𝑡
2 = 𝑀(2,2) + 𝐴1(2,2)𝜀𝑖,𝑡−1

2 + 𝐵1(2,2)𝜎𝑖,𝑡−1
2                                                      (14.2) 

𝜎3,𝑡
2 = 𝑀(3,3) + 𝐴1(3,3)𝜀𝑖,𝑡−1

2 + 𝐵1(3,3)𝜎𝑖,𝑡−1
2                                                      (14.3) 

𝜎4,𝑡
2 = 𝑀(4,4) + 𝐴1(4,4)𝜀𝑖,𝑡−1

2 + 𝐵1(4,4)𝜎𝑖,𝑡−1
2                                                      (14.4) 

 

The covariance model in equation form is thus 

𝜌1,2,𝑡 = 𝑀(1,2) + 𝐴1(1,1)𝜀1,𝑡−1 ∗ 𝜀2,𝑡−1 + 𝐵1(1,1)𝜌1,2,𝑡−1                                  (14.5) 

𝜌1,3,𝑡 = 𝑀(1,3) + 𝐴1(1,3)𝜀1,𝑡−1 ∗ 𝜀3,𝑡−1 + 𝐵1(1,3)𝜌1,3,𝑡−1                                  (14.6) 

𝜌1,4,𝑡 = 𝑀(1,4) + 𝐴1(1,4)𝜀1,𝑡−1 ∗ 𝜀4,𝑡−1 + 𝐵1(1,4)𝜌1,3,𝑡−1                                  (14.7) 

𝜌2,3,𝑡 = 𝑀(2,3) + 𝐴1(2,3)𝜀2,𝑡−1 ∗ 𝜀3,𝑡−1 + 𝐵1(2,3)𝜌1,3,𝑡−1                                  (14.8) 

𝜌2,4,𝑡 = 𝑀(2,4) + 𝐴1(2,4)𝜀2,𝑡−1 ∗ 𝜀4,𝑡−1 + 𝐵1(2,4)𝜌2,4,𝑡−1                                  (14.9) 

𝜌3,4,𝑡 = 𝑀(3,4) + 𝐴1(3,4)𝜀3,𝑡−1 ∗ 𝜀4,𝑡−1 + 𝐵1(3,4)𝜌3,4,𝑡−1                                 (14.10) 

 

Therefore, the specification of VECH model is given as 

𝑉𝐸𝐶𝐻(𝐻𝑡) = 𝐶 + 𝐴𝑉𝐸𝐶𝐻(𝐸𝑡−1𝐸𝑡−1
′ ) +  𝐵𝑉𝐸𝐶𝐻(𝐻𝑡−1)                                     (14.11)                               

Where Ht = NxN conditional variance-covariance matrix, 𝐸𝑡= Nx1 disturbance vector, 𝑉𝐸𝐶𝐻(∙) = the column stacking 

operator applied to the upper portion of the symmetric matrix, C = N(N+1)/N parameter vector, A and B = N(N+1)/N 

parameter matrices. 
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Constant Conditional Correlation (CCC) Model  

According to Hansen et al., (2012), the constant conditional correlation (CCC) model was developed by Bollerslev in 

1990 to model the correlation coefficient matrix but the coefficients are constant, describing univariate fluctuation 

characteristics and negatively capturing the dynamic correlation between sequences. 

 Let (ƞt) be a sequence of iid variables with distribution ƞ. A process (ϵt) is called CCC-GARCH(p,q) if it satisfies  

ϵt   =   Ht
1/2 ƞt 

 Ht  =   Dt R Dt                                                                                                                                                                        

ht  =  ꞷ + ∑ A
𝑞
𝑖=1 𝑖ϵt-1   +  ∑ 𝐵𝑗

𝑝
𝑗=1 hi – j                                                                                                                   

where R is a correlation matrix, ꞷ is an mx1 vector with positive coefficients, Ai and Bj are mxm matrices with 

nonnegative coefficients, Dt is a diagonal matrix of conditional variance, Ht
1/2

 is the cholesky factor of the time-varying 

conditional covariance matrix Ht, Dt is a diagonal matrix of conditional variance and ƞt is an mx1 vector of normal, 

independent and identically distributed innovations. 

The advantage of this specification is that a simple condition ensuring the positive definiteness of Ht is obtained 

through the positive coefficients for the matrices Ai and Bj and the choice for a positive definite matrix for R. However, 

this model is limited by its non-stability by aggregation and arbitrary nature of the assumption of constant conditional 

correlations. 

 

Method of Estimating Parameters of Multivariate GARCH Model                                      

The quasi maximum likelihood (QML) method is often used for estimating the conditional covariance matrix of an 

MGARCH model. That is, if it is stated in the statement that θ is a parameter for a residual vector t with dimensions 

Nx1, and that the conditional covariance matrix of t, Ht (θ), is positive definite and NxN. By applying the log 

probability of a normal distribution to θ, the estimate can be optimize using the QML approach.
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Post Estimation Technique 

Conducting conditional heteroscedasticity tests is essential for ensuring that the chosen model provides the most 

accurate estimates. In this work, two tests were used to measure conditional heteroscedasticity. They are portmanteau 

analysis and the Q-Q plot 

The Portmanteau test statistics is given as:  i
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Results  

Table 1: Descriptive Statistics on Raw and Return of Crude Oil Price Benchmarks 

 

 

  COA COB COD COWTI RCOA RCOB RCOD RCOWTI 

Mean 44.9 46.0 43.9 44.7 0.2 0.2 0.2 0.2 

Median 30.7 31.0 28.9 31.7 0.9 0.6 0.9 0.8 

Maximum 132.9 133.9 131.2 133.9 43.0 43.3 49.1 54.7 

Minimum 9.6 9.5 7.9 11.3 -50.5 -51.1 -54.0 -59.3 

Std. Dev. 30.4 31.7 31.2 28.5 9.2 9.4 9.5 9.4 

Skewness 0.9 0.9 0.9 0.9 -0.7 -0.5 -0.7 -0.7 

Kurtosis 2.6 2.7 2.6 2.6 8.3 6.9 9.3 11.0 

Jarque-Bera 68.7 71.6 70.5 66.0 620.1 331.8 853.1 1367.0 

Probability 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sum 22263.1 22823.4 21774.1 22191.6 85.6 85.3 90.2 81.1 

Sum Sq. Dev. 457293.6 498712.3 480674.9 401026.6 41482.2 43372.7 44335.8 43753.3 

Observations 496 496 496 496 495 495 495 495 
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Figure 1:  Time Plot on Crude Oil Price Average, Crude Oil Price Brent, Crude Oil Price Dubai and Crude Oil 

Price West Texas Intermediate from 1982, January to May, 2023. 
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Figure 2: Time Plot on the Difference Crude Oil Price Average, Crude Oil Price Brent, Crude Oil Price Dubai 

and Crude Oil Price West Texas Intermediate from 1982, January to May, 2023. 

 

Table 2:  Results of Unit Root Test on Raw and Return on Crude Oil Price Benchmarks 

Variable  t-Statistic P-Value  Remarks  

COA   -2.220  0.199  

1(1) D(COA) -14.976  0.000 

COB   -2.172  0.217  

1(1) D(COB) -15.415  0.000 

COD   -2.171  0.217  

1(1) D(COD) -14.637  0.000 

COWTI   -2.367  0.152  

1(1) D(COWTI) -15.396  0.000 
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Table 3: Result of Test for Co-integration 

Unrestricted Co-integration Rank Test (Trace) Unrestricted Co-integration Rank Test (Maximum 

Eigenvalue) 

Hypothesized  Trace 0.05   Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical 

Value 

Prob.**  Eigenvalue  Statistic  Critical 

Value 

 Prob.** 

r= 0  0.350  599.027  47.856  0.000  0.291  168.822  21.132  0.0001 

r≤ 1  0.291  388.084  29.797  0.000  0.222  122.785  14.265  0.0001 

r≤ 2  0.222  219.263  15.495  0.000  0.179  96.478  3.841  0.0000 

r≤ 3  0.179  96.478  3.841  0.000  0.350  210.942  27.584  0.0001 

 

Table 4: Results of VAR lag Order Selection Criteria 

 Lag LogL LR FPE AIC SC HQ 

0 -3784.515 NA   67.160  15.559  15.593  15.572 

1 -3726.289  115.26  56.467  15.385   15.557*  15.453 

2 -3680.701  89.491  50.007  15.264  15.573   15.385* 

3 -3655.770  48.532  48.208  15.227  15.674  15.403 

4 -3636.499  37.197  47.568  15.214  15.798  15.443 

5 -3613.905  43.239  46.301  15.186  15.909  15.470 

6 -3585.311   54.251*   43.974*   15.135*  15.995  15.473 

7 -3574.231  20.842  44.881  15.155  16.153  15.547 

8 -3564.590  17.976  46.081  15.181  16.316  15.627 

 

* Indicates lag order selected by the criterion 

LR: sequential modified LR test statistic (each test at 5% level) 

FPE: Final prediction error 

AIC: Akaike information criterion 

SC: Schwarz information criterion 

HQ: Hannan-Quinn information criterion 

 

Table 5: Result of Error Correction Model and ARCH Effect 

Crude oil Price Benchmark series Cointegration 

Rank 

ECT Residuals 

Heteroscedasticity 

Test (statistics) 

P-Value 

Crude oil Price Average 4 29.29453(4.920)  10701.210 (0.0000) 

Crude oil Price in Brent Blend 4 -15.445(1.979)  22431.320 (0.0000) 

Crude oil Price in Dubai 4   -7.031(1.426)   8643.737 (0.0000) 

Crude oil Price in West Texas 

Intermediate (WTI),  

4 -8.320(1.67884)   7906.609 (0.0000) 

Note: in parenthesis p-value is attached 
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Model Estimation   

Results of Vector Error Conditional Heteroskedasticity (VECH) GARCH 

The matrix representation of results of the Vector Error Conditional Heteroskedasticity (VECH) GARCH is presented 

as thus:  

 

𝑀 = [

20.973 12.072 30.695 19.154
12.072 7.118 17.661 10.715
30.695 17.661 46.087 26.488
19.154 10.715 26.488 18.709

],     𝐴 = [

0.555 0.528 0.561 0.485
0.528 0.502 0.537 0.460
0.561 0.537 0.565 0.490
0.485 0.460 0.490 0.430

] 

 

𝐵 = [

0.268 0.377 0.120 0.316
0.377 0.524 0.177 0.439
0.120 0.177 0.047 0.138
0.316 0.439 0.138 0.376

]   

 

Alternatively, the model is represented in equation form as:  

𝜎i,t 
2 = [

20.973
7.118
46.087
18.709

]  + [

0.555
0.502
0.565
0.430

] ∗ 𝜀𝑖,𝑡−1
2  + [

0.268
0.524
0.047
0.376

] ∗ 𝜎i,t-1
2                                             (16.0) 

Variance Equation:   
𝜎1,𝑡

2 = 20.974 + 0.555𝜀𝑖,𝑡−1
2 + 0.268𝜎𝑖,𝑡−1

2                                                            (16.1) 

𝜎2,𝑡
2 = 7.118 + 0.502𝜀𝑖,𝑡−1

2 + 0.524𝜎𝑖,𝑡−1
2      (16.2) 

𝜎3,𝑡
2 = 46.087 + 0.565𝜀𝑖,𝑡−1

2 + 0.047𝜎𝑖,𝑡−1
2      (16.3) 

𝜎4,𝑡
2 = 18.708 + 0.430𝜀𝑖,𝑡−1

2 + 0.376𝜎𝑖,𝑡−1
2      (16.4) 

Covariance Equation  

𝜌1,2,𝑡 =
12.072
(0.000)

+
0.528

(0.000)
𝜀1,𝑡−1 ∗ 𝜀2,𝑡−1 +

0.377
(0.000)

𝜌1,2,𝑡−1   (16.5) 

𝜌1,3,𝑡 =
30.695
(0.000)

+
0.562

(0.000)
𝜀1,𝑡−1 ∗ 𝜀3,𝑡−1 +

0.120
(0.000)

𝜌1,3,𝑡−1   (16.6) 

𝜌1,4,𝑡 =
19.154
(0.000)

+
0.485

(0.000)
𝜀1,𝑡−1 ∗ 𝜀4,𝑡−1 +

0.316
(0.000)

𝜌1,2,𝑡−1   (16.7) 

𝜌2,3,𝑡 =
17.661
(0.000)

+
0.537

(0.000)
𝜀2,𝑡−1 ∗ 𝜀3,𝑡−1 +

0.177
(0.000)

𝜌2,3,𝑡−1              (16.8) 

𝜌2,4,𝑡 =
10.715
(0.000)

+
0.460

(0.000)
𝜀2,𝑡−1 ∗ 𝜀4,𝑡−1 +

0.439
(0.000)

𝜌2,4,𝑡−1   (16.9) 

𝜌3,4,𝑡 =
26.488
(0.000)

+
0.490

(0.000)
𝜀3,𝑡−1 ∗ 𝜀4,𝑡−1 +

0.134
(0.000)

𝜌3,4,𝑡−1   (16.10) 

 

Results of Variance-Covariance Estimates of the Constant Conditional Correlation Diagonal Multivariate 

GARCH Model  

The matrix representation of the variance-covariance estimates of the diagonal constant conditional correlation 

multivariate GARCH model are thus; 

𝜎𝑖,𝑡
2 = 𝑀(𝑖) + 𝐴1(𝑖)𝜀𝑖,𝑡−1

2 + 𝐵1(𝑖)𝜎𝑖,𝑡−1
2  

𝜌(𝑖, 𝑗) = 𝑅(𝑖, 𝑗) ∗ √𝐴1(𝑖)𝜎𝑖,𝑡−1
2 ∗ 𝐵1(𝑖)𝜎𝑖,𝑡−1

2  

 

𝑀(𝑖) = [

58.095
76.976
54.338
56.325

] , 𝐴1(𝑖) = [

0.085
0.096
0.092
0.083

]  ,     𝐵1(𝑖) = [

0.152
0.030
0.248
0.159

]    (17.0) 
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𝑅(𝑖, 𝑗) =

[
 
 
 
 
 
 0

0.989
(0.000)

∗ √𝜎1,𝑡−1
2 ∗ (𝑖)𝜎2,𝑡−1

2 0.979
(0.000)

∗ √𝜎1,𝑡−1
2 ∗ (𝑖)𝜎3,𝑡−1

2 0.970
(0.000)

∗ √𝜎1,𝑡−1
2 ∗ (𝑖)𝜎4,𝑡−1

2

0 0
0.935

(0.000)
∗ √𝜎2,𝑡−1

2 ∗ (𝑖)𝜎3,𝑡−1
2 0.936

(0.000)
∗ √𝜎2,𝑡−1

2 ∗ (𝑖)𝜎4,𝑡−1
2

0 0 0
0.915

(0.000)
∗ √𝜎3,𝑡−1

2 ∗ (𝑖)𝜎4,𝑡−1
2

]
 
 
 
 
 
 

 (18.0) 

Variance-Covariance Estimates of the Constant Conditional Correlation Diagonal Multivariate GARCH 

Model in equation form  

𝜎1,𝑡
2 =

58.095
(0.000)

+
0.085𝜀1,𝑡−1

2

(0.000)
+

0.152𝜎1,𝑡−1
2

(0.000)
      (19.1) 

𝜎2,𝑡
2 =

76.976
(0.000)

+
0.096𝜀2,𝑡−1

2

(0.000)
+

0.030𝜎2,𝑡−1
2

(0.000)
      (19.2) 

𝜎3,𝑡
2 =

54.338
(0.000)

+
0.092𝜀3,𝑡−1

2

(0.000)
+

0.0248𝜎3,𝑡−1
2

(0.000)
                   (19.3) 

𝜎4,𝑡
2 =

56.325
(0.000)

+
0.083𝜀4,𝑡−1

2

(0.000)
+

0.159𝜎4,𝑡−1
2

(0.000)
      (19.4) 

𝜌(1,2),𝑡 =
0.989

(0.000)
∗ √𝜎1,𝑡−1

2 ∗ (𝑖)𝜎2,𝑡−1
2       (19.5) 

𝜌(1,3),𝑡 =
0.979

(0.000)
∗ √𝜎1,𝑡−1

2 ∗ (𝑖)𝜎3,𝑡−1
2       (19.6) 

𝜌(1,4),𝑡 =
0.970

(0.000)
∗ √𝜎1,𝑡−1

2 ∗ (𝑖)𝜎4,𝑡−1
2       (19.7) 

𝜌(2,3),𝑡 =
0.935

(0.000)
∗ √𝜎2,𝑡−1

2 ∗ (𝑖)𝜎3,𝑡−1
2       (19.8) 

𝜌(2,4),𝑡 =
0.936

(0.000)
∗ √𝜎2,𝑡−1

2 ∗ (𝑖)𝜎4,𝑡−1
2       (19.9) 

𝜌(3,4),𝑡 =
0.915

(0.000)
∗ √𝜎3,𝑡−1

2 ∗ (𝑖)𝜎4,𝑡−1
2       (19.10) 

 

 

Table 6: Result of Model Selection and Heteroskedasticity Test 

Parameters   DVECH 

Model  

DCC 

MINIMUM AIC 

Decision Orthogonalization: 

Cholesky (Lutkepohl)  

Log likelihood -4696.795 -3647.117    

Avg. log likelihood -2.372119 -1.841978   248.523(0.4194) 

Akaike info criterion 19.11432 14.82471 14.82471 DCC 3650.747(0.654) 

Schwarz criterion 19.40312 15.01158 
 

 3899.270(0.819) 

Hannan-Quinn criter. 19.22770 14.89807 
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Table 7: Estimation Results for Portmanteau Tests  

      
Lags Q-Stat Prob. Adj Q-Stat Prob. Df 

1  22.93649  0.1154  23.05721  0.1122 16 

2  46.25668  0.0494  46.62417  0.0458 32 

3  59.27973  0.1274  59.85504  0.1171 48 

4  91.70694  0.0132  92.97588  0.0105 64 

5  100.8715  0.0574  102.3868  0.0466 80 

6  113.1738  0.1113  115.0881  0.0896 96 

7  122.4939  0.2343  124.7627  0.1931 112 

8  155.4524  0.0497  159.1621  0.0322 128 

9  172.4273  0.0532  176.9764  0.0321 144 

10  192.1867  0.0420  197.8274  0.0225 160 

11  204.9934  0.0664  211.4168  0.0352 176 

12  223.8200  0.0576  231.5055  0.0271 192 

      
Source: Researcher’s Calculation using Eviews Version 10 

 

Discussion of Results 

Vector Error Correction Model 

The results of vector error correction model as presented in table 5 shows that the coefficient of error correction term 

29.29453 in Crude oil Price Average market was unable to fulfill the condition of negativity and significant but the 

ECT is negative and significant for Crude oil Price in Brent Blend (-15.445), Crude oil Price in Dubai (-7.031) and 

Crude oil Price in West Texas Intermediate (-8.320), which indicates that when Crude oil Price in Brent Blend, Crude 

oil Price in Dubai and Crude oil Price in West Texas Intermediate deviate from equilibrium level, they tend to correct 

at -15.445, -7.031 and -8.320 respectively back towards long run equilibrium level in the next period.  

 

Vector Error Conditional Heteroskedasticity (VECH) GARCH 

The leading diagonal estimates (0.555, 0.502, 0.565, 0.430) of ARCH coefficient matrix A measures the sensitivity 

of the current conditional variance of COA, COB, COD and COWTI to the squared lagged error. A larger ARCH 

coefficient means that past shocks have a stronger impact on current volatility. From equations 16.1, 16.2, 16.3 and 

16.4 past shocks has the strongest impact on current volatility in COD, followed by COA, COB then COWTI. The 

GARCH estimates COA 0.268, COB 0.524, COD 0.047 and COWTI 0.376 in matrix B measures the persistence of 

volatility. COB has the highest volatility persistence with COD representing the lowest volatility shocks to die out. In 

the covariance equation, the coefficient of the ARCH terms in equations 16.1, 16.2, 16.3 and 16.4 measures the 

sensitivity of the current conditional covariance to the product of the lagged errors of the two assets. Equation 16.5 

shows a positive long-run average covariance (12.072) of COA and COB. Past co-shocks have a small positive impact 

(0.528) and a moderate positive persistence in the covariance (0.377). Equation 16.6 shows a positive long-run average 

covariance (30.695) of COA and COD. Past co-shocks have a small positive impact (0.562) and a small positive 

persistence in the covariance (0.120). Equation 16.7 shows a positive long-run average covariance (19.154) of COA 

and COWTI, past co-shocks have a moderate impact (0.485) and a moderate persistence in covariance (0.316). 

Equation 16.8 shows a positive long-run average covariance (17.661) of COB and COD. Past co-shocks have a small 

positive impact (0.537) and a small positive persistence in the covariance (0.177). Equation 16.9 shows a positive 

long-run average covariance (10.715) of COB and COWTI. Past co-shocks have a small positive impact (0.460) and 

a moderate positive persistence in the covariance (0.439). Equation 16.10 shows a positive long-run average 

covariance (26.488) of COD and COWTI. Past co-shocks have a small positive impact (0.490) and a small positive 

persistence in the covariance (0.134). The variance-covariance matrices of the four primary crude oil benchmarks are 

positive integers and symmetric around the leading diagonal, these features are mathematically significant and 

attractive. This feature ensures a positive anticipated value at risk, independent of the weight of the asset series in the 

portfolio. Our findings are consistent with those of Deebom et al. (2020), who evaluated diagonal MGARCH models 

with conditional variance-covariance using interest and currency rates from Nigerian commercial banks. Interest rates 

https://en.wikipedia.org/wiki/Brent_Blend
https://en.wikipedia.org/wiki/West_Texas_Intermediate
https://en.wikipedia.org/wiki/Brent_Blend
https://en.wikipedia.org/wiki/West_Texas_Intermediate
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on time deposits held by commercial banks are affected by shocks to exchange rates; both variables have a positive 

conditional variance; yet, the diagonal multivariate VECH GARCH model that attempts to explain the relationship 

between them fails to show any temporal clustering. When the estimates on the leading diagonal are positive, the 

elements in the variance-covariance matrix become symmetrical, then diagonal multivariate VECH is characterised 

as "positive semi-definite" according to Deebom et al. (2020). 

 

Variance-Covariance Estimates of the Constant Conditional Correlation Diagonal Multivariate GARCH 

Model 

All the values of the variance-covariance estimates are non-zero, suggesting that both markets exhibit ARCH and 

GARCH effects.  By the 5% level of significance, all ARCH parameters estimated for the Diagonal Dynamic 

Conditional Correlation (DCC) (α) are robust, positive, and statistically significant. When the total of α and β is less 

than one, the model exhibits volatility due to the fact that conditional correlations evolve with time. Market returns 

and crude oil prices exhibit time-dependent oscillations, according to the Diagonal Conditional Correlation (DCC) 

test. From equations 19.5, 19.6, 19.7, 19.8, 19.9 and 19.10, the positive and highly significant conditional correlation 

(0.989), between crude oil price Average and Brent, crude oil price Average and Dubai (0.979), crude oil price 

Average and West Texas Intermediate (0.970), Brent and Dubai (0.935), Brent and West Texas Intermediate (0.936), 

and Dubai and West Texas Intermediate (0.915) reflect the presence of strong direct interconnections between the 

returns on crude oil price markets. The coefficient of correlation ranges from 0.915 to 0.989. Positive association 

between these variables show evidence of increase in volatility with high degree of correlation during the period under 

investigation. These findings agree with Kanchan et al., (2017), on volatility spillover using multivariate GARCH 

Model and the application in futures and spot market price of black pepper. In Kanchan et al., (2017), it was found 

that there is a dynamic and time varying conditional correlation between spot and futures market reflecting significant 

volatility spillover during the period of the year 2012.  Estimates presented in table 6 reveal that the Diagonal 

Conditional Correlation (DCC) model had the smallest Akaike Information Criteria of 14.82471 as against 19.11432 

for MVECH model. This confirms that the DCC model better captures volatility of crude oil benchmark than the 

DVECH model. According to the model diagnostics, the DCC-GARCH model fared better than the DVECH model. 

This criterion was satisfied by the portmanteau test in table 7 when out of the twelve lags tested eight of the lags were 

statistically significant. 

 

Conclusion 

Since the coefficients of error correction term in the model using Crude Oil Price Average market as the dependent 

variable, was positive and insignificant at the 5% level of significance essentially means that changes in the average 

crude oil price benchmark do not have significant association with the other variables in question over a long term. 

This could suggest that other variables are having a greater influence on COB, COD and COWTI. Furthermore, the 

tendency for crude oil prices to revert to back to their equilibrium over time is not feasible because of its explosiveness. 

Also, crude oil Brent price benchmark (15.445) has the highest speed of reverting to stability in the long term after a 

shock, followed by crude oil West Texas Intermediate price benchmark (8.320) and then crude oil Dubai price 

benchmark (7.031). Diagonal multivariate VECH model exhibit "positive semidefinite" property as the leading 

diagonal of the variance-covariance matrix has positive estimates, indicating that the variables move together and 

irrespective of the weight of all the crude oil price return the Value at Risk (VaR) will be positive. Also, there is 

evidence of positive and strong correlation between these crude oil markets, this simply means that regardless of what 

the markets might experience within the period under investigations volatility persist overtime. Each asset in the 

portfolio exhibits time-varying volatility as captured by the significant ARCH and GARCH coefficients. The constant 

conditional correlation between COA and COB, COD, COWTI are very high (around 0.97 to 0.99), this suggests a 

strong tendency for these assets to move in the same direction. The diagonal conditional correlation model is identified 

as the best model for modeling volatility of crude oil price benchmark when compared to multivariate VECH. This 

conclusion is based on its lower Akaike Information Criterion (AIC). The findings provide credence to the idea that 

residual autocorrelations do not exist in the chosen model, indicating a good fit and valid statistical properties.  

 

Recommendations 

i. Hedging and sharing of information are essential in the crude oil market because of its inherent volatility. 

ii. To better manage risk and rebalance their portfolios, marketers and investors should benefit from a better 

understanding of the link between crude oil prices. 
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iii. The most effective MGARCH model for crude oil markets within the scope of the COA, COB, COD and WTI is 

the DCC-GARCH. 
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