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Abstract  

This paper examined Galois groups of polynomials with resolvents. Galois theory addresses the solvability of 

polynomial equations by radicals, specifically to determine when the polynomial can be solved using a sequence of  

operations and roots extractions for higher degree polynomials. This paper investigated  polynomials roots, inherent 

difficulties and complexities associated with computing Galois groups of polynomials with a zero in on the 

incorporation of resolvents with specific emphasis to polynomials of order 3, 4, 5 and 6 . Applications  are also 

presented. 
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Introduction 

Galois theory instituted  by 𝐸̂variste Galois a French mathematician,  came up with a bridge between group and field 

theory, also essential in number theory, differential equations, algebraic geometry, and classic problems like squaring 

the circle and  equally used to authenticate  if a polynomial is solvable. Galois is conceded as the creator of modern 

algebra because his hypothesis was among the hypotheses that started  the contemporary knowledge of groups theory 

in the history of mathematics (Leistar,  2023). One of the most essential applications of Galois theory is to give the 

yardstick for deciding when a polynomial is solvable through the use of rational operations and root extractions which  

is executed  by exploiting the comparability between fields and their specific automorphism groups. In essence, there 

exists a sequence of sub-fields between the splitting field and the coefficient field which relates to a sequence of 

subgroups (Bewersdorff,  2006). 

 

In the principality of Galois theory, the computation of Galois groups for polynomials stands intricate. While the theory 

itself gives a distinguished framework for comprehending the symmetries of polynomial roots, the practical 

computation of Galois groups, particularly when resolvents are involved, presents a layer of experience that demands 

careful investigation (Geissler & Klüners, 2000). Galois’s introduction allowed him to characterize the polynomial 

equations that are solvable by radicals in terms of properties of the permutation group of their roots, an equation is 

solvable by radicals if it’s root may be presented by formula involving only integers. This is a generalization of Abel 

Ruffini’s theorem (also known as Abel’s impossible theorem) , which states that “ No formula exists for the solution 

of degree five or more , using only the operations of  +, ×.  ÷, −  and  √ (Ramond, 2020). The fundamental theorem 

of Galois theory gives a link between algebraic field extension, effective criterion for the solvability of polynomial 

equations in terms of the solvability of the corresponding Galois group. As an example, 𝑆5 the symmetric group of 

order 5 which has  120  elements is not solvable and this implies that the general quintic equation cannot be solved by 

radicals in a manner that equations of lower degrees can relate to. The theory being one of the historical roots of group 

theory is still fruitfully applied to bring on new results in specialty such as classical field theory (Orlitzky, 2022). 

 

In Galois theory, a resolvent for a permutation group is a polynomial whose coefficients depend on the coefficients of 

a given polynomial. Galois theory studies the symmetries inherent in polynomial equations, has transformed the study 

of algebraic extensions and presented a profound interrelationship between algebra and number theory. If a polynomial 

is separable and irreducible then the corresponding Galois  group will be a transitive subgroup. Nonetheless, a group 

can be a subgroup of several groups. A resolvent can provide a direction  if the Galois group of polynomial is necessarily  

a proper subgroup or not. Galois theory stands at the framework of modern algebra and interchanges with many areas 
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of mathematics. The problem of investigating Galois groups  has been detected  to be of profound interest not just in 

algebra, but also from the area of number theory inspiring many questions in other areas of mathematics.  

 

Preliminaries  

In this section, preliminaries are presented on key concepts and  theorems , further details can be obtained from : 

Weintraub (2000), Bewersdoff (2006), Bright (2013),Ramond (2020), Mertens (2021)  and Laszlo (2024) . 

.   

i.A field extension is a larger field that contains the original field. Field extensions helps in  the comprehension of  the 

relationships between roots of  polynomials. 

ii.A cyclotomic extension is a field extension obtained by adjoining roots of unity to the base field. 

  iii. Automorphism: - A bijective map from a mathematical object to itself, preserving the underlying structure. Field    

automorphisms play a key role in understanding the symmetries of field extensions.  

 iv.The symmetric group on n elements, denoted as 𝑆𝑛, is the group of all permutations of n distinct objects. 

v. Polynomial:-A polynomial over a field k in the indeterminate x is defined as F[𝑋] =  𝑎𝑂𝑥𝑜 +  𝑎1𝑥1 + 𝑎2𝑥2 +
 𝑎3𝑥3 + ⋯ +  𝑎𝑛𝑥𝑛 , 𝑛 = 0, 1, 2, ⋯ , 𝑛 ∈ 𝑊, where W represents the set of whole numbers. The scalar  𝑎𝑛 is called 

the leading coefficient of  F[X], 𝑎𝑖′𝑠  ∈  ℝ, the set of real numbers and n is the degree of the polynomial F[X]. F[X] is 

also regarded as polynomial ring where F[X] is defined over a ring (R, +, ∙), “+” is the operation of addition and “∙” is 

the operation of multiplication. 

Types of polynomials 

Degree Polynomial Name 

n = 1 𝑎0 + 𝑎1𝑥   Monic (Linear) Polynomial 

n = 2 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2  Quadratic Polynomial 

n = 3 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3  Cubic Polynomial 

n = 4 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4,  Quadratic  

n = 5 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5,  Quintic Polynomial 

n = 6 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6,  Sextic Polynomial 

n = 7 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7  Septic Polynomial 

n = 8 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7 +  𝑎8𝑥8  Octic Polynomial 

n = 9 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7 +  𝑎8𝑥8 +  𝑎9𝑥9   Nonic Polynomial 

n = 10 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7 +  𝑎8𝑥8 +  𝑎9𝑥9 +
𝑎10𝑥10  

Decic Polynomial 

n = 11 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7 +  𝑎8𝑥8 +  𝑎9𝑥9 +
𝑎10𝑥10 +  𝑎11𝑥11  

Undecic Polynomial 

n = 12 𝑎𝑜 + 𝑎1𝑥 + 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5 +  𝑎6𝑥6 + 𝑎7𝑥7 +  𝑎8𝑥8 +  𝑎9𝑥9 +
𝑎10𝑥10 +  𝑎11𝑥11 + 𝑎12𝑥12 ,  

Dodecic Polynomial 

 

 

There is no general name for polynomials of degree 13th to 20th, such polynomials are routinely called with respect to 

their degree’s, for n=13, polynomial is called 13th degree polynomial etc  

vi.An irreducible polynomial is a polynomial that cannot be factored into the product of two non-constant polynomials. 

 

Theorem : Galois group of irreducible polynomial 𝐹 ∈ 𝑄[𝑋] act transitively on the set of roots of F[X]. 

Corolary: If F[X] represents an irreducible polynomial of degree n, then, the order of the Galois group of F[X] is 

divisible by n, i.e  |𝐺𝑎𝑙| =  |𝜃(∝𝑖)| =  |𝑠𝑡𝑎𝑒 (∝)| 
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Hence, F[X] gives an irreducible polynomial of degree n in Q[∝] which means that the Galois group represents a 

transitive subgroup of 𝑆𝑛 . 
  

Galois groups  

The Galois group of a polynomial is a mathematical group that expresses the symmetries of the polynomial's roots 

under field automorphisms. Galois groups of polynomial equations gives a strong framework for understanding the 

solvability of these equations to figure out the long-standing puzzle of solving polynomial equations of degree five or 

higher. A polynomial is solvable by radicals if every root of the polynomial can be obtained from rational numbers 

using formulas together with  basic operation of addition, subtraction, multiplication, division and nth roots. The 

solvability by radicals is revealed  through the use of Galois theory together with field theory.  

 

It has been indicated that the problem of defining Galois groups is of great applicability not only in algebra but also 

from the perspective of number theory, raising several issues in other branches of mathematics (Obi, 2017). Galois 

first illustrated how the several fundamental bases of a certain polynomial condition are related to one another via 

stage gatherings. By examining the Galois groups that represents the polynomial equations, it presents a robust 

foundation for understanding their solvability. The solvability of polynomial equations by radicals is the crux of Galois 

theory . The long-standing issue of solving polynomial equations of degree five or higher can be resolved by applying 

a series of arithmetic operations and root extractions to algebraic equations (Stewart, 2009).  

Brzeziński (2011) demonstrated that the solvability of a radical's Galois group characterizes equations that can be 

solved by radicals. This reveal that radicals cannot solve general equations with degrees greater than 5. A technique 

for confirming if the alternating group  𝐴𝑛on a  solution is included in the Galois group of a Schubert problem on a 

Grassmannian (a Schubert Galois group) as presented by Vakil (2006) which confirmed that such a Galois group 

alternates. This permits  for identification of  an endless family of Schubert issues whose Galois groups were not the 

entire symmetric group and equally to show that the majority of Schubert problems on small Grassmannians  ,which 

can be  a  differentiable manifold ,were at least alternating. Transitive permutation groups are typically Galois groups 

of enumerative problems. There is a distinction between primitive groups, which sustain a nontrivial partition, and 

primitive groups, which are transitive permutation groups that conserve no nontrivial separation.  

 

The Galois group of any given enumerative issue is a fascinating topic. The Galois group Gal can be presented  to be 

either 𝑆𝑛 or to contain its subgroup 𝐴𝑛 of alternating permutations using different methods for studying Galois groups 

in enumerative geometry. Structures in enumerative geometry or polynomial systems provides details about the 

corresponding Galois groups. Information connecting Galois groups may be employed  to identify these structures in 

an increasing number of algebraic geometry applications, either  for comprehension or for  solving the application. 

Galois groups includes but not limited to the underlisted  examples : 

i. Cyclic group 𝐶2 as in 𝑥2 − 2 , the klein four group 𝑉4  for 𝑥4 − 𝑥2 − 2, dihedral group 𝐷4 for 𝑥4 − 2  
over the rationals ℚ 

ii. Polynomials : 𝑥2 − 2, splitting field : ℚ(√2 ), giving the Galois group of 𝐶2  and representing the cyclic 

group of order 2 ) 

iii.  Polynomial : 𝑥2 + 1 of splitting field of ℚ(𝑖) 𝑐orresponding to Galois group is the cyclic group of order 

2 , 𝐶2 

iv. Polynomial : 𝑥4 − 𝑥2 − 2 synonymous with the splitting field of ℚ(√2 , 𝑖) and corresponding to a Galois 

group of 𝑉4  

 

Method of Solutions of Polynomials of degree n 

Polynomials of degree 1, the method of solution of linear polynomials depends on the type of polynomial, suppose 

the polynomial is a pair of simultaneous equations then, elimination method, substitution method, graphical method, 

cramer’s rule etc suffices. 

For 𝑛 = 2, the method of solution of quadratic polynomials include the followings: factorisation method, completing 

square method, quadratic formula method, graphical method. 

For  𝑛 = 3, the method of solution of cubic polynomials include the following: factorisation method: synthetic division 

method, substitution (change of variables), Cardano formula, Lagrange cubic resolvent, numerical methods and 

through radicals. 

For 𝑛 = 4, for quartic polynomials, the method of solution follows the same as the cubic polynomial and it  includes: 

factorisation method, synthetic division method, Cardano formula, Lagrange resolvent, through radicals, substitution 

(change of variable) and numerical method ( Newton Raphsons)  
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For 𝑛 = 5,the solution of quintic polynomials was a major problem in algebra before the early 19th century when the 

general solution was ascertained using Abel-Ruffin’s theorem which states that “No algebraic expression or formula 

for the general solution of quintic polynomial over the rational” (Ramond, 2020).This statement is also germane to 

polynomial of higher degrees, an example is that quintic polynomial cannot be solved in terms of radicals, nonetheless, 

there are quintic polynomials that can  be expressed in terms of radicals but the solution to these polynomials are 

majorly very complex and cannot be used for practical reasons.  

 

Resolvents of  Polynomials  

The resolvent is a polynomial whose calculation relies on two other polynomials. The resolvent method of a 

polynomial is a polynomial of lower degree whose roots relate to the roots of the original polynomial (Alizadeh, 2012). 

Precisely, the roots of a resolvent polynomial are the outcome of evaluating dissimilarity of a multivariate polynomial 

at the roots of a second polynomial. The procedure expresses how one can use resolvent polynomials to navigate 

through the lattice of possible Galois groups and eventually, determine Gal(P). Regrettably, the complexity of such a 

procedure grows with the intricacy of the additional lattice of possible Galois groups. The methods for resolving higher 

degree  polynomials can be obtained in  Computer Algebra Systems (CAS) using Mathematica, Maple and SageMath 

as well as compuations of Galois groups.   

 

Bartel and de Smit (2013) evolved  a machinery of resultants and resolvent polynomials with the ultimate objective 

of understanding the  “resolvent method” for computing Galois groups over the rationals  ℚ. For the determination of 

invariant polynomials, it is adequate to obtain one V-invariant polynomial which is not U-invariant, in place of 

bringing about the full invariant ring for V . Kret and Shin (2023) talked through computations of Galois groups. They 

debated some theoretical fundamentals on numerical methods which are implemented in some computer packages . 

They illustrated how to calculate and partition Galois groups for low degree polynomials by indicating some numerical 

invariants, which gives information on the isomorphism type of the Galois group in relation to their values, executed 

for polynomials of degrees 3 and 4. They further devled into Galois resolvents and used them to ascertain a general 

theorem by Richard Dedekind, which relates the Galois group of an integer irreducible polynomial to Galois groups 

of its reductions modulo prime numbers.  

Forming a Galois resolvent  

Given that the coefficient of V(F, f) can be written as integral polynomial in the coefficient of f, it will be possible to 

write down such polynomial for any given F. For large n, the polynomial seems to be of high degree and with large 

coefficients. In practices, different method is applied for the computation of the resolvents. This approach, benefited 

by the fact that the coefficients of 𝑉(𝐹, 𝑓) are rational integers. Hence we fix some numerical approximation of the 

roots of 𝑓𝑛 (𝑎1 𝑎2  ⋯ 𝑎𝑛) and calculate the following product 𝑆𝑛 acting on 𝑎𝑖𝑠 by permuting their indices in the same 

way as it does on 𝑎𝑖𝑠 i.e. 

∏ (𝑋 − 𝑠 𝐹(∝1 ⋯  ∝𝑛)

𝑠∈𝑆𝑛|𝑆

 ) 

With the approximation being normal, the coefficient of this product are approximated with an absolute error less than 

½. They uniquely evaluated coefficients of V(F, f) which we know to be rational integers (Obi, 2017). 

 

Galois Extension 

Given a field 𝐾,which is a field extension collection of G, a group, called the Galois group of the field extension 𝐾 

over F, usually written as Gal (𝐾
𝐹⁄ ). 

 Consider the following examples: 

i. 𝑥2 + 2𝑥 + 5 = 0, we can solve this quadratic equation as follows: 

𝑥2 + 2𝑥 + 5 = 0 ⇒ (𝑥 + 1)2 + 4 = 0 ⇒ (𝑥 + 1)2 =  −4 

                     (𝑥 + 1) =  ± √−4 

                 (𝑥 + 1) =  ± 2𝑖 
                                  𝑥 =  −1 ±  2𝑖 

𝑥1,2 =  −1 ±  2𝑖 ⟹  𝑥1 = −1 + 2𝑖, 𝑥2 =  −1 − 2𝑖 let E be the splitting field extension, then, 

𝐸 = 𝑄[𝑥1, 𝑥2]  ⟹ 𝑄 [−1 + 2𝑖, −1 − 2𝑖] 
= 𝑄 [𝑖] 

Hence, the Galois group of this polynomial is defined as: 

Gal (𝐸
𝑄⁄ ) = [𝑒, 𝜎] =  𝑆2, 𝑖. 𝑒 

𝜎1(−1 + 2𝑖) =  −1 − 2𝑖 
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              𝜎2(−1 − 2𝑖) =  −1 + 2𝑖, 𝜎 =  −𝑖 
 

ii.𝑥2 + 2𝑥 − 5 = 0 ⟹  (𝑥 + 1)2 − 6 = 0 

(𝑥 + 1)2 = 6 

         (𝑥 + 1) =  ±√6 

𝑥 =  −1 ± √6 

𝑥1 = 1 + √6, 𝑥2 =  −1 − √6 

Let k be the splitting field extension, then 𝑘 = 𝑄[𝑥1, 𝑥2] 

                 = 𝑄[−1 + √6, −1 − √6] = 𝑄[√6]  

Therefore, the Gal (𝐾
𝑄⁄ ) = [𝑒, ℑ] =  𝑆2, ℑ

𝑄⁄ = {𝑒}. 

Let us consider the cubic polynomial of the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 where a, b, c, d are possible complex or 

real numbers. Here we need to apply Cardano formular but first we need to construct Lagrange cubic resolvent which 

will help us prove the Cardano formula before applying. 

Let 𝐹 ⊂ 𝐸 be a Galois group extension, Gal (𝐸
𝐹⁄ )  ≅ 𝐺 ≅  ℤ𝑚 = 〈𝜎〉. Assume that F contain a primitive m-root of 

unity, then 𝜇 = 𝑒
2𝜋𝑖

𝑚⁄ , 𝜇𝑚 = 1. Considering the ℤ𝑚 − grading of E as  

𝐸 = 𝐸0 ⨁ 𝐸1  ⨁ 𝐸2⨁𝐸𝑚−1  ⋯ 𝑎𝑛𝑑 dim 𝐸𝑗 = 1  

𝐸𝑗 =  {𝑥 ∈ 𝐸|𝜎(𝑥) =  𝜇𝑘𝑥|} 

𝐸0 =  𝐸𝐺 = 𝐹, since the operator is of order m, then; 

0 = (𝜎 − 𝐼) =  ∏(𝜎 − 𝜇𝑘𝐼

𝑘=0

) = (𝜎 − 𝐼)(𝐼 +  𝜎 + 𝜎2 +  ⋯ + 𝜎𝑚−1) 

     = 𝐼 + 𝜎 + 𝜎2 + ⋯ + 𝜎𝑚−1 =  ∏(𝜎 − 𝜇𝑘𝐼

𝑘=1

) 

                                                              = (𝐼 +  𝜎 + 𝜎2 + ⋯ + 𝜎𝑚−1)𝑥 =  {𝑚𝑥,   𝑥 ∈ 𝐸0

0,𝑥∈𝐸𝑗,𝐽 ≠1
 

∏(𝜇 −

𝑚−1

𝑘=1

𝜇𝑘𝐼) = 𝐼 +  𝜇1𝜎 + 𝜇2𝜎2 + ⋯ + 𝜇(𝑚−1)𝜎(𝑚−1) = (𝜇 𝑗𝜎), 

This expression is known as Lagrange cubic resolvent, therefore, the projection of 𝐸 → 𝐸𝑗 is given as 
1

𝑚
(𝜇 𝑗𝜎). Now  

consider the general cubic equation in a depressed form i.e. cubic equation without the quadratic term. 

𝑥3 + 𝑎𝑥 + 𝑏 = 0 

𝑥3 + 𝑎𝑥 + 𝑏 = (𝑥 −∝1)(𝑥 −∝2)(𝑥 − ∝3) 

From Vieta’s theorem, we know that  

    ∝1+∝2+∝3= 0                                                                                                 
∝1∝2+∝1∝3+∝2∝3= 𝑎                                                                             
∝1∝2∝3=  −𝑏                                                                                                 

The system of equation presented then represents the values of ∝1, ∝2  and ∝3, However, the general result about 

symmetric polynomial in ∝1, ∝2, ∝3 is expressible in terms of the coefficient of the depressed cubic polynomial {a, 

b}. Let E be the splitting field extension over rational, the E= Q[𝜇]; 

𝜇 = 𝑒
2𝜋𝑖

3⁄ =  
1

2
+

√3𝑖

2
 be the primitive root of unity, therefore 𝐸 = 𝑄[∝1∝2∝3], then the Gal (𝐸/𝐹) =  𝑆3. 

Hence, 𝑆3  ⊃ 𝐴3 ⊃ {𝑒}, 𝐹 =  𝐸𝐺 , 𝐴3 = Gal (
𝐸

𝐹
) which implies that [E:F]=3,[E :K]=|𝑆3| = 6 𝑎𝑛𝑑 [𝐹: 𝐾] = 2. 

𝜃 = ∏(∝𝑖−∝𝑗) = 

[<]

(∝1− ∝2)(∝1− ∝3)(∝2− ∝3) 

This is 𝐴3 invariant but not 𝑆3 invariant so if we let 𝐷 = 𝜃2, 𝑡ℎ𝑒𝑛 (∝𝑖−∝𝑗)
2

(∝1− ∝3)2(∝2− ∝1)2 =  𝑆3 invariant. 

After some simplification we have the discriminate 𝐷 = −4𝑎3 − 27𝑏2, 

𝐹 = 𝐾[√𝐷],  Gal (
𝐸

𝐹
) =  ℤ3 =  〈𝜎〉, 𝜎〈(1,2,3)〉, considering the ℤ3 − grading 𝐸 = 𝐸0 ⨁ 𝐸1  ⨁ 𝐸2⨁𝐸3 

 𝐸𝑗 = {𝑥 ∈ 𝐸 | 𝜎(𝑥) =  𝜇 𝑗𝑥 } 𝑏𝑢𝑡 𝐸0 = 𝐹, 

Therefore, 

∝1=  𝑃𝑜 + 𝑃1 + 𝑃2, 𝑃𝑗  ∈  𝐸𝑗 

𝑃𝑗 =
1

𝑚
 (𝜇𝑘𝜎)(∝𝑖) 
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𝑃𝑜 =  
1

3
 (𝐼 + 𝜎 + 𝜎2)(∝𝑖) =  

1

3
 (∝1+∝2+∝3) = 0 

Since (∝1+∝2+∝3) = 0 from the equation of the system of equation stated above. 

𝑃1 =
1

3
(𝐼 + 𝜇𝜎 + 𝜇2𝜎2)(∝𝑖)  =

1

3
(∝1+ 𝜇 ∝2+ 𝜇2 ∝3)  ∈  𝐸1 

       𝑃2 =
1

3
(∝1+ 𝜇 ∝2+ 𝜇2 ∝3)  ∈  𝐸2 

∴  𝑃𝑜 , 𝑃1, 𝑃2  ∈ 𝐸 = 𝐹 

                             𝑃1
3 = −

𝑏

2
− 

(
1
2

− 𝜇)

9
 √𝐷,                        𝑃 =  −

𝑎

3
 

Therefore, 

∝= √−
1

2
−

√3

18
 

3

√𝐷  − 

𝑎
3

√−
𝑏
2

−
√3
18 √𝐷 

3
 

This prove the Cardano formula with the help of Lagrange resolvent and Galois Theory, but this can be proved by 

substitution (change of value) as follows. Consider the same depressed cubic polynomial 𝑥3 + 𝑎𝑥 + 𝑏 = 0, 𝐿𝑒𝑡 𝑥 =
𝑝 − 𝑞, then  𝑥3 + 3𝑝𝑞𝑥 − (𝑝3 − 𝑞3) . Collecting like terms gives:  

 𝑥3 + 3𝑝𝑞𝑥 − (𝑝3 − 𝑞3) =  𝑥3 + 𝑎𝑥 + 𝑏 

                                          a = 3pq, −𝑏 = (𝑝3 − 𝑞3) 

but from a = 3pq, q = 
𝑎

3𝑝
,  then, 

−𝑏 = (𝑝3 − (
𝑎

3𝑝
)

3

)  ⟹  −𝑏 =  𝑝3 −
𝑎3

27𝑃3
 

(𝑝3)2 + 𝑝3𝑏 −  
𝑎3

27
= 0,        𝐿𝑒𝑡 𝑦 =  𝑝3 

Then 𝑦2 + 𝑦𝑏 −  
𝑎3

27
= 0, a quadratic polynomial. With application of  the quadratic formula we have: 

𝑦 =  
−𝑏 ± √𝑏2 + 4(

𝑎3

27
)

2
 

But y = 𝑝3,                                    𝑃 =  √−𝑏 ±√𝑏2+4(
𝑎3

27
)

2

3

 

𝑃 =  √−
𝑏

2
 ± √(

𝑏

2
)

2

+
𝑎3

27

3

,  

Recall that; q = 
𝑎

3𝑝
 ⟹ 𝑞 =  

𝑎

3

√−
𝑏

2
 ±√(

𝑏

2
)

2
+

𝑎3

27

3
 

But x = p – q 

     𝑥1,2 = √−
𝑏

2
 ± √(

𝑏

2
)

2

+
𝑎3

27

3

 −  

𝑎
3

√−
𝑏
2

 ± √(
𝑏
2

)
2

+
𝑎3

27

3

 

This verified  the Cardano formula. Quadratic polynomial in a depressed form 𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥 −∝1)(𝑥 −∝2)(𝑥 −∝3)(𝑥 −∝4), from Vieta’s Theorem. 

∝1+∝2+∝3+∝4= 0                                                                             
∝1∝2+∝1∝3+∝1∝4+∝2∝3+∝2∝4+∝3∝4= 0                            
∝1∝2∝3+∝1∝2∝4+∝1∝3∝4+∝2∝3∝4=∝1∝2∝3∝4= 𝐶          

Let E be the splitting field extension over K, k = Q[𝜇], 𝜇 =  𝑒
2𝜋𝑖

3⁄ , here we do not need the 4-root of unity. 𝐸 =

𝑘 [∝1, ∝2, ∝3, ∝4] therefore, the Gal ( 𝐸 𝐹⁄ ) = 𝑆4, the commutator of this group are; 
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𝑆4
(1)

=  𝐴4, 𝑆4
(2)

=  𝑉4 {(1, 2), (3, 2), (1, 3), (2, 4), (1, 4), (2, 3)} and {𝑒} ≅  ℤ2  × ℤ2, 𝑆4  ⊃ 𝐴4  ⊃  𝑉4  ⊃ {𝑒} 𝑘 ⊂

𝑘 [√𝐷]  ⊂ 𝐹 ⊂ 𝐸, 𝑖𝑓 𝜃 =  ∏ (∝𝑖−∝𝑗)𝑖<𝑗≤4 , 𝑡ℎ𝑒𝑛 𝐷 =  𝜃2 = ∏ (∝𝑖∝𝑗)
2

𝑖<𝑗≤4 , 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝐺𝑎𝑙 (𝐸
𝐹⁄ ) = 𝑉4 =

 〈 𝜎1, 𝜎1 〉,  𝜎1(1,2), (3,4), 𝜎2(1,3), (2,4), but let us recall the  ℤ4 − grading. 
𝐸𝑗  ⟹ 𝐸 =   𝐸𝑜  ⨁  𝐸1𝑂  ⨁  𝐸𝑜1 ⨁  𝐸11 

𝐸 =  {𝑥 ∈ 𝐸 |
 𝜎2(𝑥)       (−1)𝑘𝑥

 𝜎1(𝑥) =  (−1)𝑗𝑥
} 

𝐸𝑜1 = 𝐸𝑉4 = 𝐹 and the projection of  𝐸𝑗  

1

4
(𝐼 + (−1)𝑗   𝜎1)(𝐼 + (−1)𝑘√2) 

The roots of the quadratic polynomial is  𝑥 =  𝑃𝑜𝑜 +  𝑃1𝑜 +  𝑃𝑜1 +  𝑃11 

𝑥 =  
1

4
(𝐼 +    𝜎1)(𝐼 +    𝜎2)( ∝𝑖) 

=  
1

4
(𝐼 +   𝜎1)( ∝1+   ∝3) 

       =
1

4
( ∝1+  ∝2+∝3+ ∝4) = 0 

Hence, 𝑃10 =
1

4
( ∝1− ∝2+∝3− ∝4), 𝑃𝑜1 =

1

4
( ∝1− ∝2−∝3− ∝4), 𝑃11 =

1

4
( ∝1− ∝2−∝3+∝4) 

𝐾[√𝐷] ⊂ 𝐹, 𝐺𝑎𝑙 (
𝐸

𝐾[√6]
) =

𝐴4

𝑉4

 ≅  ℤ3 =  〈ℑ〉 

𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =  𝐹0 ⨁ 𝐹1⨁𝐹2  𝐹0 = 𝑘√6  , 𝑟10
𝑘 =

1

3
(𝜇−𝑘ℑ  (𝑃𝑗,𝑖)

2
)  

𝑃10, 𝑃𝑜1, 𝑃11 =  −
𝑏

8
,    𝑟11

(1)
=  𝑟10

2 =
𝑎

144
+

𝑐

12
 , 

After a complicated simplification we have : 𝑄 =  
𝑎3

1728
+

𝑏2

128
−

𝑎𝑐

48
−  

(
1

2
− 𝜇)

576
 √𝐷 𝑎𝑛𝑑 

𝐷 = −4𝑎2𝑏2 + 16𝑎𝑐 − 27𝑏4 + 144𝑎𝑏2𝑐 − 128𝑎2𝑐2 + 256𝑐3, therefore ∝ = 𝑃1𝑜 +   𝑃𝑜1 +   𝑃11. 

𝑃1𝑜 = √−
𝑎

6
+ √𝑄3 +  

𝑆

√𝑄3  ,  𝑃𝑜1 = √−
𝑎

2
+ 𝜇 √𝑄3 + 

𝜇𝑆

√𝑄3  

𝑃11 =
(

−𝑏

8
)

 𝑃11𝑃1𝑜
, by substituting these resulted to ∝ = 𝑃1𝑜 +  𝑃𝑜1 +  𝑃11. We obtain the desired result and It is still 

possible, if we still apply the change of variable method and obtain this result. 

 

Results   

 

Criterion for Solvability of Polynomial of degree 3 

Example 𝑥3 + 3𝑥 + 1 = 0, recall that the discriminant of the general depressed cubic polynomial is defined as :  𝑥3 +
𝑎𝑥 + 𝑏 = 0, 𝑖𝑠  𝐷 = −4𝑎3 − 27𝑏2. Let K be the splitting field extension over Q, then 𝐺𝑎𝑙(𝑘/𝑄)  ≤ 𝐴3 if and only if 

the discriminant is a perfect square. However, to compute the Galois group of this polynomial, we need to verify 

whether or not the above polynomial is irreducible. 

According to the irreducibility properties stated in the previous chapter, the cubic polynomial is irreducible. Hence, 

the Galois group of this polynomial is not the trivial group, since ∆ =  −4(−3)3 − 27(1) = 81 = 92 is a perfect 

square, therefore, the Galois group of this polynomial is a subgroup of 𝐴3 with 3-cycles and it is a transitive subgroup 

because the polynomial is irreducible. Therefore,  

𝐺𝑎𝑙 (𝐾
𝑄⁄ ) = 𝐴3  ≅  𝑆3 𝑤𝑖𝑡ℎ 〈(1, 2, 3)〉 

𝐻(𝑋) = 𝑥3 − 2, This polynomial is irreducible using Eisenstein criterion of  simple roots, suppose let the roots of 

H(x) be 𝜔1, 𝜔2, 𝜔3 ⋯,  forming the Galois resolvent by choosing the coefficients that are integers. Simplifying this 

process means that the coefficients have been taken with the crux that they give different values of the resolvent for 

each conjugation. 

 𝑉0 =  𝜔1 + 2𝜔2 + 3𝜔3,                𝑉1 =  𝜔3  +  2𝜔1 + 3𝜔2  
𝑉2 =  𝜔2 + 2𝜔3 + 3𝜔1,                  𝑉3 =  𝜔2 + 2𝜔1 + 3𝜔3    
Then the polynomial will be values of the resolvent and  it is conjugate as roots  

H(x) = (𝑥 − 𝑦0)(𝑥 − 𝑦1)(𝑥 − 𝑦2)(𝑥 − 𝑦3)(𝑥 − 𝑦4)(𝑥 − 𝑦5). 
         = 𝑥6 − (𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5)𝑥5 + [(𝑦0 + 𝑦1)(𝑦2 + 𝑦3 + 𝑦4 + 𝑦5) + (𝑦2 + 𝑦3)(𝑦4 + 𝑦5)] 𝑥4 +
[𝑦0𝑦1 + 𝑦2𝑦3 + 𝑦4𝑦5]𝑥4 − [𝑦0𝑦1(𝑦2 + 𝑦3 + 𝑦4 + 𝑦5)(𝑦2𝑦3(𝑦4 + 𝑦5) + 𝑦4𝑦5(𝑦2 + 𝑦3)]𝑥3[(𝑦0 + 𝑦1)(𝑦2𝑦3 +
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𝑦4𝑦5 + (𝑦2 + 𝑦3)(𝑦4 + 𝑦5)]𝑥3 + [(𝑦2𝑦3𝑦4𝑦5 + (𝑦0 + 𝑦1)(𝑦2𝑦3(𝑦4 + 𝑦5))]𝑥2 + [(𝑦4𝑦5(𝑦2 + 𝑦3)) + 𝑦0𝑦1(𝑦2 +

𝑦3) (𝑦4 + 𝑦5) + 𝑦2𝑦3 + 𝑦4𝑦5)]𝑥2 − [(𝑦0 + 𝑦1)𝑦2𝑦3𝑦4𝑦5 + 𝑦0𝑦1(𝑦2𝑦3(𝑦4 + 𝑦5) + 𝑦4 + 𝑦5(𝑦2 + 𝑦3)]𝑥 +

𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5 

Expanding the coefficient of H[X] in terms if the roots 𝜔1, 𝜔2, 𝜔3, gives the symmetric polynomial in the roots e.g. 

𝑥5 𝑎𝑛𝑑 𝑥4 .  

Hence, 𝑥6 − 𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5  is irreducible in Q. 

12 (𝜔1 + 𝜔2 + 𝜔3)𝑥5 𝑎𝑛𝑑 58(𝜔1
2 + 𝜔2

2 +  𝜔3
2) + 122(𝜔1𝜔2 + 𝜔1𝜔3 + 𝜔2𝜔3)]𝑥4  

 

Criterion for Solvability of Polynomial of degree 4 

𝐺[𝑋] = 𝑥4 − 2𝑥3 − 8𝑥 − 3 

Given that 𝐺[𝑋] = 𝑥4 − 2𝑥3 − 8𝑥 − 3, for x = 3, 𝐺(3) = 81 − 54 − 24 − 3 = 0. Hence  𝐺[𝑋] = (𝑥 − 3)(𝑥3 +
𝑥2 + 3𝑥 + 1).Let 𝑓[𝑋] = 𝑥3 + 𝑥2 + 3𝑥 + 1, there is the need to verify whether or not f[X] is irreducible, if f[X] is 

irreducible over finite 𝐺𝑝 , it means  that f[X] is irreducible over 𝑄[𝑋]𝑎𝑛𝑑 ℤ [𝑋] . Hence, f[X] is irreducible over 𝐺5, 

since f[X] is a cubic polynomial, using the intermediate value theorem f[X] has at least one real root in ℝ and two 

complex conjugation, 𝐺𝑎𝑙 (𝐹5/𝑄) = 𝐺 ≤  𝑆3 and the Galois group is transitive with (1, 2) and (1, 2, 3) cycles. 

 

 

Criterion for Solvability of Quintic Polynomial 

To apply Galois theorem, there is the  need to establish some irreducibility criteria that will allow us to solve Quintic 

polynomials and higher degree polynomial up to degree n. Let F ∈  ℤ[𝑋], then there exist a rational scalar C ∈ ℚ such 

that 𝐶 ≠ 0 ∀ 𝐶 𝐹[𝑋]  ∈  ℤ[𝑋] and the greatest common divisor (gcd) of the coefficients is 1, if 𝐹[𝑋] =  𝑎0 + 𝑎1𝑥 +
𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛, 𝑎 ∈  ℤ[𝑋], then the following properties holds: 

a. F[X] is irreducible in ℚ[X] if 𝑓[𝑋] is irreducible in ℤ[𝑋]. 
b. Let p be  prime and suppose, the leading coefficient 𝑎𝑛 ≠ 0 and not p, if 

 𝑓[𝑋] is irreducible inℤ[𝑥], 𝑡ℎ𝑒𝑛 𝐹[𝑋]𝑖𝑠 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑖𝑛 𝑄[𝑋]. 
Example: 𝑥3 − 𝑥 + 1 𝑖𝑠 irreducible 𝑖𝑛 ℤ𝑝[𝑥] 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 7𝑥3 +  4𝑥2 + 𝑥 + 3 is irreducible in ℤ[𝑋]. 

 

Eisenstein Criteria 

Given P is prime and suppose the leading coefficient 𝑎𝑛 is indivisible by P and other coefficients are divisible by p 

and 𝑎0 is not divisible by 𝑃2 𝑡ℎ𝑒𝑛 𝐹[∝] is irreducible in ℤ[𝑋]. 
Example: 𝑥3 + 4𝑥 + 2 = 0 is irreducible by Eisenstein’s criteria. 

Shifting Invariant  

Let 𝑎 ∈  ℤ[∝] be irreducible if and only if f(x – a) is irreducible. Let p be  prime such that 

𝐹[∝] =  𝑋𝑃 + 𝑋𝑃−1 + ⋯ + 𝑋𝑝+1 

becomes irreducible because, from the general solution of the above polynomial 

𝐹[𝑋] =  
𝑋𝑃 − 1

𝑋 − 1
, 𝐹(𝑥 − 1) =  

(𝑋 + 1)𝑃 − 1

(𝑥 + 1) − 1
=

1

𝑋
(∑ (

𝑃
𝐾

) 𝑋𝑘 − 1

𝑝

𝑘=0

) 

                                                                              =  𝑋𝑃−1 + (
𝑃
1

) 𝑋𝑃−1 + (
𝑃
2

) 𝑋𝑃−2 + ⋯ + (
𝑃

𝑃 − 1
) 

And 𝑎𝑜 =  (
𝑃

𝑃 − 1
) = 𝑃 which is not divisible by 𝑃2 .Therefore, using Eisenstein’s criteria this polynomial is 

irreducible. Suppose that F(x) is irreducible polynomial of degree n, i.e. 

𝐹(𝑋) =  𝑎𝑛(𝑤 −  𝑤1)(𝑤 − 𝑤2) ⋯ (𝑤 −  𝑤𝑛)∀ 𝑤𝑖 ∈  𝑄̅  ⊂ 𝐶, implying that  F[X] is irreducible, i.e.  

𝐸 = 𝑄[𝑤1, 𝑤2, 𝑤3  ⋯ 𝑤𝑚), 𝑄[∝𝑖 ]  ≅ 𝑄 [𝑤𝑗] ≅ 𝑄 [𝑥] |〈𝐹〉, 𝑖𝑓 𝜎: 𝑄[𝑤𝑖]  →  𝑄[𝑤𝑗], 𝜎(𝑤) =  𝑤, From Homomorphism 

theorem, the field extension is embedding of E → 𝑄̅ and for E  normal over 𝑄[∝] then the splitting field E is 𝜎[𝐸] =

𝐹, Hence we conclude that 𝜎 ∈ 𝐺𝑎𝑙 (𝐸
𝑄⁄ ) such that 𝜎 (𝑤𝑖) =  𝑤𝑗. 

 

Example 

𝐹[𝑋] =  𝑥5 − 4𝑥 + 2 

The Quintic polynomial is irreducible going by Eisenstein’s criteria for p =2, hence the Galois group of irreducible 

polynomials is transitive, hence for every roots of the polynomial say 𝑤1

𝜎
→ 𝑤2 hence,        

 |𝐺| =  |𝑜𝑟𝑏𝑖𝑡 𝑜𝑓 𝑤|  ×  |𝐺: 𝑆𝑡𝑎𝑏 (𝑤)| 
Hence, 𝐺𝑎𝑙 (𝐹/𝐺) =  𝑆5 
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Using Cauchy theorem, the polynomial 〈(1, 2, 3, 4, 5)〉  ∈ 𝐺, to get the roots of this polynomial, 

 𝐹[𝑋] =  𝑥5 − 4𝑥 + 2,   𝐹′[𝑋] = 5𝑥4 − 4, this means that 

For 𝐹′[𝑋] = 0, 5𝑥4 − 4 = 0  ⇒  𝑥4 =
4

5
  ⇒ 𝑥 =  ±

2

√5
4   

This means that  since Quintic polynomial has more turning points, the Quintic equation has exactly 3-real roots and 

two complex roots.  ∴ (𝑎, 𝑏) ∈ 𝐺 ⊆  𝑆5 

 

Example  

Given that 𝐻(𝑥) = 𝑥5 + 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒  ∈ 𝑄(𝑥) be the general Quintic polynomial with roots 

𝑤1, 𝑤2, 𝑤3,𝑤4, 𝑤5 and assume that these roots satisfy 𝑤𝑖
5 − 5𝑤𝑖 + 12 = 0, 𝑖 = 1, 2, 3, 4, 5. Here we need to construct 

the cubic resolvent as follows. A general cubic resolvent for quintic polynomial is 𝐺(𝑦) = 𝑦3 + 𝑝𝑦 + 𝑞 where p and 

q are related to the coefficient of the original equation. 

Assume that 𝐺(𝑦) = 𝑦3 − 15𝑦 + 12, then p = −15 and q = 12 by  

Cardano formula 𝐷 =  (
𝑞

2
)

2 

+ (
𝑝

3
)

3

  

𝐷 =  (
12

2
)

2 

+ (−
15

3
)

3

= 62 + (−5)3 = 36 − 125 = −89,  

With the Discrimnant D being negative, the cubic resolvent polynomial has three district real roots, applying the 

trigonometry version of cardano formula by substituting y = u + v, i.e. 𝑢3 + 𝑣3 =  −𝑞, 

 𝑢𝑣 =  −
𝑝

3
, 𝑢3, 𝑣3 = 𝑤1, 𝑤2, 𝑤3 which are the roots of the quadratic polynomial 

Hence,  𝑊𝑘 =  √−
𝑞

2
+ √𝐷

3
   and 𝑊𝑘 =  √−

𝑞

2
− √𝐷

3
 

𝑢3 =    √−6 +  𝑖√39,
3

          𝑣3 = √−6 −  𝑖√39,
3

 

Hence,  𝑦𝑘 = √−
𝑝

3
cos (

𝜃+2𝑘𝜋

3
)

2
,                    𝑘 = 0, 1, 2 

where 𝜃 = cos−1 (
𝑞

2√(−
𝑝

3
)

3
), substituting all these values we have 

√−
𝑝

3
=  √−

15

3
=  √5 and cos (

𝜃

3
) = cos (cos−1 (

12

√532 ) , 

𝜃 = cos−1 (
12

2√125
)  = cos−1 (

12

22.36
) = cos−1(0.536) = 57.12𝑜 

For 𝑘 = 0, 𝑦1 =  √5 cos (
57.12𝑜

3
)

2

 ≅ 4.24 

            𝐹or k =1, 𝑦2 =  √5 cos (
57.12𝑜 + 120

3
)

2

 ≅ 2.301 

   𝐹or k =2, 𝑦3 =  √5 cos (
57.12𝑜 + 240

3
)

2

 ≅  −0.698 

Therefore, the roots of this resolvent 𝑦1 , 𝑦2, 𝑦3 provides a preview to the nature of the quintic polynomial, meaning 

that the Galois group is likely to be complex, hence, the Quintic polynomial cannot be solved by radical.  

 

 Sextic Polynomial  

𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0 

Here we can apply substitution method (change of variable) by Let 𝑦 = 𝑥 +
1

𝑥
 but before that, we need to divide 

through the above polynomial by 𝑥3 i.e. 
𝑥6+𝑥5+𝑥4+𝑥3+𝑥2+𝑥+1

𝑥3   = 𝑥3 + 𝑥2 + 𝑥 + 1 + 𝑥−1 + 𝑥−2 + 𝑥−3 

𝑥3 + 𝑥−3 + 𝑥2 + 𝑥−3 + 𝑥 + 𝑥−1 + 1 = 0 

(𝑥 −
1

3
)

3

− 3 (𝑥 −
1

𝑥
) + (𝑥 +

1

𝑥
)

2

− 2 (𝑥 −
1

𝑥
) + (𝑥 +

1

𝑥
) + 1 = 0 
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Assuming that 𝑦 = 𝑥 +
1

𝑥
 

𝑦3 − 3(𝑦) + 2(𝑦) + 𝑦2 + 𝑦 + 1 = 0 

𝑦3 − 4𝑦 + 𝑦2 + 1 = 0 

𝑦3 + 𝑦2 − 4𝑦 + 1 = 0 

which is the minimal polynomial of 𝑥 + 𝑥−1 there it’s roots are 2cos (
2𝜋

7
) = 𝑥 + 𝑥−1, 2 Cos (

4𝜋

7
) = 𝑥2 +

𝑥−2and 2 Cos (
6𝜋

7
) = 𝑥3 + 𝑥−3, since Cos

6𝜋

7
< cos

4𝜋

7
. 

Solving this by Cardano formula gives    Cos (
2𝜋

7
) =

1

6
[−1 + √

98

1+ √3
3

𝑖

3
+  √

7

2
(1 + 3√3𝑖)

3
 

Cos (
4𝜋

7
) =

1

12
[2 + (1 − 3√3𝑖)  +  √

98

1 + 3√3𝑖

3

+ (1 + √3𝑖 ) ( 3√
7

2
(1 + 3√3𝑖)] 

Cos (
6𝜋

7
) =

1

12
[2 + (1 − √3𝑖)  √

98

1 + 3√3𝑖

3

+ (1 − √3𝑖 ) (3√
7

2
(1 + 3√3𝑖)] 

But 𝑆𝑖𝑛 𝜃 =  √1 − Cos2 𝜃    ,   ∀   0 ≤  𝜃 ≤  𝜋 

 Sin (
2𝜋

7
) =

1

29
√

1

3
√

7

4

3
[2𝑣 + (1 − √3𝑖 + 2√2

3
(−2 + √3𝑖) 

Sin (
4𝜋

7
) =

1

24
√

1

3
√

7

4

3

 [2𝑣 − (1 + √3𝑖)𝑤 + 3√2 [5 + √3𝑖]

= Sin (
6𝜋

7
) =

1

24
√

1

3
3√

7

3
[2𝑣 − 2𝑤 − 3√2(1 +  3√3𝑖)]  

where 𝑢 = √1 + 3√3𝑖
3

,     𝑣 =  √49 (−13 + 3√3𝑖)
3

,          𝑤 =  √7(1 + 3√3𝑖
33

 

  

Applications   

i. In engineering, polynomial systems are usage involves construct mechanisms with a desired range of motion.  An 

example is in the robotic arm movements may need to be able to reach many locations in order to accomplish certain 

activities. Polynomial systems can be used to represent these movements, and then the discussed procedures can be 

used to study them. The  nine-point  synthesis  problem for  four-bar linkages  is one of  Alt's  problems   (Allgower 

& Georg, 2003).  

 

ii. It also gives a complete answer to ancient questions such as dividing a circle into an equal arc using ruler and 

compasses. In modern language, Galois theory deals with 'field extensions', and the central study is the 'Galois 

correspondence' between extensions and groups. 

 

iii.Resolvent polynomials are used to determine Galois groups of polynomials. The computation of the resolvent 

typically relies on root approximations, requiring a high degree of precision. Leonard Soicher has developed a method 

to compute absolute linear resolvents symbolically without the need for root approximations (Valibouze, 2020).  

 

iv.One of the most important applications of Galois theory is to provide the criterion for estimating when a polynomial 

is solvable through rational operations and root extractions, executed by exploiting the interrelationship between fields 

and their respective automorphism groups. There is a sequence of sub-fields between the splitting field and the 

coefficient field, and these equates to a sequence of subgroups.  

 

v. In Algebraic number theory , Galois theory  forms  significant part of number theory particularly in the context of 

class field theory which relates class groups of number fields to Galois groups of their extension 
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vi.Classical mechanics : Galois theory is important in the aspect of integrability of Hamiltonian systems in the study 

of dynamics system  

 

vii.Application to minimal polynomial : Considering 𝐿/𝐾 to be a Galois extension and 𝑤 ∈ 𝐿, the Galois group 

𝐺𝑎𝑙( 𝐿/𝐾) provides a systematic way to describe all the roots of the minimal polynomial of  𝑤 over 𝑘. They are the 

different elements of the Galois orbit { 𝜎(𝑤): 𝜎 ∈ 𝐺𝑎𝑙 (𝐿/𝐾)}. Suppose Gal (L/K) acts on 𝐿[𝑋], and not just 𝐿,by 

acting on polynomial coefficients then, we can relate minimal polynomial of the same number over different fields 

using a Galois group (Conrad, 2020). 

  

viii.Classical Mechanics :Galois theory is essential in the area of integrability of Hamiltonian systems in the study of 

dynamics systems. 

 

Conclusion  

Galois theory as a branch of abstract algebra, explores the connection between field theory and collective theory. Its 

use in computer algebra to simplify radical formulas is an interesting example (Awtrey, Cesarski & Jakes, 2017). It 

should come as no surprise that studies in algebraic geometry, group theory, and number theory have taken this task 

into consideration, creating a lovely connection between group theory and the theory of polynomial equations.  

Galois's work serves as the basis for several core ideas in group theory. In general, calculation of  the Galois group of 

a given polynomial is numerically complicated when the degree of the polynomial is modestly high. The numerical 

methods depend on the knowledge of transitive subgroups of the symmetric groups. Most polynomials of degree five 

or higher does not have closed form solutions because of the computational hurdle of the solutions of these types of 

polynomials. Hence,it is  recommended that Galois groups  and resolvents method should  be used to solve these 

polynomials  for errors-free solutions. .    
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