Evaluation of Aqueous extracts of Hyptis suaveolens, Curcuma longa and Ixora coccinea against 3rd instar larva of Culex quinquefasciatus
DOI:
https://doi.org/10.63561/jabs.v2i3.927Keywords:
Toxicology, Mosquito physiology, Ixora coccinea, Larva control, Culex quinquefasciatusAbstract
Mosquitos have been implicated to be vectors of many debilitating diseases that affect both humans and livestock. Out of over 3500 mosquito species that have been identified, Culex quinquefasciatus stands out because they are hardy and can survive in different environmental conditions compared to Aedes species and Anopheles species. Culex quinquefasciatus are carriers of different pathogens ranging from bacteria, fungi, protozoans and helminths. This research aims to assess the larvicidal potential of aqueous solvent extract of the leaves of Hyptis suaveolens, Curcuma longa and Ixora coccinea against 3rd instar larva of Culex quinquefasciatus. Adult Culex quinquefasciatus were collected blood fed, reared in an entomological cage. The resulting 3rd instar of F1 generation were assayed using serial concentrations of 10 % stock solutions of the leaves extracts while feeding ad libitum. The result obtained revealed that aqueous extracts of the three plants at different concentrations (10 mg/L, 20 mg/L, 30 mg/L, 40 mg/L and 50 mg/L) was found to cause varied mortality in C. quinquefasciatus third (3rd) instar larvae after exposure. Extract of Hyptis suaveolens recorded significantly higher mortality (27.33 ± 0.57) at 50 mg/L concentration than H. suaveolens (14.67 ± 0.57) and C. longa (14.33 ± 0.57) when larvae were exposed to the same concentration. Lethal dosage studies required to yield 50 % and 90 % mortality for larvae were found to be smaller (LD 50 = 27.9 mg/L and LD 90 = 49.4 mg/L) when Ixora coccinea was tested compared to that of others tested. Out of the leaves extracts tested, Ixora coccinea was observed to be the most potent laicide. By way of recommendation, other plants should be tested on different mosquito species in a bid to obtain more plants that can control the vector.
References
Adebote, D.A., & Adeyemi, M.M.H. (2011). Larvicidal Efficacy of Solvent Extracted Stem Bark of Bobgunnia madagascariensis (Desv.) J.H. Kirkbr and Wiersema (Caesalpiniaceae) against Culex quinquefasciatus, 1(7), 101-106.
Adeniyi, K.A., Ogah, E., Hamza, N., Idris, A.D.,& Bello, A.B. (2024). Evaluation of the Bio-Pesticide Efficacy of the Leaf Extracts of Hyptis suaveolens on Culex quinquefasciatus (Diptera: Culicidae). Trends in Technology and Science Research 7(3): 555713. DOI: 1109080/TTSR.2024.07.555713
Agada J., Mbah C.E., Bakam C.K., Ogundeko T.O., Sow G.J., & Bassi A.P. (2020). Evaluation of the Effects of S-Hydroprene and Various Leaf Extracts of Azadirachta Indica (A. JUSS, 1830) on Larvae of Aedes Aegypti (Linn., 1762), International Journal of Pharmacy and Pharmaceutical Research, 18(2),645-654
Ahmed, N., Alam, M., Saeed, M., Ullah, H., Iqbal, T., Al-Mutairi, K.A. & Salman, M. (2021). Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests. In: Global Decline of Insects. IntechOpen. DOI: https://doi.org/10.5772/intechopen.100416
Ahmed, N., Huma, Z., Haq, M.U., Rehman, S., Ullah, M., & Ahmed, S. (2016). Effect of different plant extracts on termite species (Heterotermis indicola). Journal of Bioresources Management 3(2): https://doi.org/10.35691/JBM.6102.0049. DOI: https://doi.org/10.35691/JBM.6102.0049
Amadi, C.O., Olojede, O.A., Nwokocha, C., Ironkwe, A., Ohiaeri, C.P., Amadi, G., & Uwandu, Q.C. (2018) Turmeric research at NRCRI Umudike: highlight of major achievements. Nigeria Agricultural Journal. 49(1):57-64.
Ambreen, I., Muhammad, A.V., Shumaila, S., Salman, K.A., & Syed, T.A. (2013). Ixorene, a new Dammarane triterpene from the leaves of Ixora coccinea L. Rec Nat Prod. 7.4: 302-306.
Azevedo, N.R., Campos, I.F.P., Ferreira, H.D., Portes, T.A., Santos, S.C., Seraphin, J.C., Paula, J.R. & Ferri, P.H. (2001). Chemical variabilityin the essential oil of Hyptis suaveolens, Phytochemistry, 57, 733–736. DOI: https://doi.org/10.1016/S0031-9422(01)00128-5
Barik, T.K., Suzuki, Y. & Rasgon, J.L. (2016). Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV) in mosquitoes. PeerJ, 4:2691. https://doi.org/10.7717/peerj.2691 DOI: https://doi.org/10.7717/peerj.2691
Belkin, J. N. (1965). Mosquito studies (Diptera, Culicidae) II. Methods for the collection, rearing and preservation of mosquitoes. Contrib. American Entomology Institute 1:1-78.
Bellone, R., & Anna-Bella, F. (2020). Temperature in shaping mosquito-borne virus transmission. Firont. Microbiol. 11, 2388. DOI: https://doi.org/10.3389/fmicb.2020.584846
Das, N.G., Dhiman, S., Talukdar, P.K., Rabha, B., Goswami, D. & Veer, V. (2015). Synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils. Journal of Infection and Public Health, 8, 323–328. DOI: https://doi.org/10.1016/j.jiph.2015.02.005
Dayvion, R.A., Andrew, J.G., Sarah, A.H., Michel, A.S. & Gabriel, L.H. (2021). Culex quinquefasciatus (Diptera: Culicidae) survivorship following the ingestion of bird blood infected with Haemoproteus sp. Parasites, Parasitology Research, 120:2343–2350. doi.org/10.1007/s00436-021-07196-7 DOI: https://doi.org/10.1007/s00436-021-07196-7
Finney, D.J., (1971). Probit analysis. Cambridge University Press, London, pp: 245.
Gerberg, E.J., Hopkins, T.M., & Gentry, J.W. (1969). Mass rearing of Culex pipiens L. Mosq. News 2:382-385.
Ikram, I. & Ali, M.Y. (2017). Larvicidal, pupicidal and adulticidal activities of non-polar solvent extract of Cymbopogon nardus (Linn.) whole plant against a mosquito, Culex quinquefasciatus (Say.), Pakistan Journal of Pharmaceutical Science, 2337-2340. PMID: 29188766
Iqbal, T., Ahmed, N., Shahjeer, K., Ahmed, S., Al-Mutairi, K.A., Khater, H.F., & Ali, R. F. (2021). Botanical Insecticides and their Potential as Anti-Insect/Pests: Are they Successful against Insects and Pests? In: Global Decline of Insects. DOI: https://doi.org/10.5772/intechopen.100418
Lambert, O. & Sophia, A.A. (2021). Evaluation of the Larvicidal Activities of the Crude Root Extracts of Ixora Coccinea L (Rubiaceae) on Aedes Aegypti Larvae, Asian Journal of Pharmaceutical Research and Development. 9(4):11-15. DOI: http://dx.doi.org/10.22270/ajprd.v9i41019 DOI: https://doi.org/10.22270/ajprd.v9i4.1019
Lim, H., Lee, S.Y., Ho, L.Y. & Sit, N.W. (2023). Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. Insects, 14, 512. https://doi.org/10.3390/insects14060512 DOI: https://doi.org/10.3390/insects14060512
Martins, F. & Silva, I.G. (2004). Avaliacado da atavidade inidora do Diflubenzuron na ecdise das larvas de Aedes aegypti (Linnaeus, 1972) (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, 37:135-138. DOI: https://doi.org/10.1590/S0037-86822004000200004
Mehlhorn, H. (2011). Nature Helps, Parasitology Research Monographs 1, Springer-VerlagBerlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-19382-8
Michael, R.A., Francisco, H., & Noel, Q. (2016). Screening for larvicidal activity of ethanolic and aqueous extracts of selected plants against Aedes aegypti and Aedes albopictus larvae, Journal of Coastal Life Medicine 2016; 4(2): 143-147. doi: 1102980/jclm.4.2016j5-242 DOI: https://doi.org/10.12980/jclm.4.2016j5-242
Ministério da Saúde & Guia de Vigilância do (2011). Culex quinquefasciatus, Secretaria de Vigilância em Saúde—Ministério da Saúde, Brasília, Brazil, 3, 76.
Murugan, K, Mahesh, K.P., Kovendan, K., Amerasan, D., Subrmaniam, J., Hwang, J.S. & Murugan, K. (2012). Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae), Parasitology Research, 111(4):1757-69. Doi: 110007/s00436-012-3021-8. PMID: 22797605 DOI: https://doi.org/10.1007/s00436-012-3021-8
Nataya, S., Siriluck, A., & Surang, N. (2019). Larvicidal Activity of Synthesized Silver Nanoparticles from Curcuma zedoaria Essential Oil against Culex quinquefasciatus, Insects, 10,27; doi:10.3390/insects10010027 DOI: https://doi.org/10.3390/insects10010027
Ninkuu, V., Zhang, L., Yan, J., Fu, Z., Yang, T., & Zeng, H. (2021). Biochemistry of Terpenes and Recent. Advances in Plant Protection. International Journal of Molecular Science; 22(11):5710. DOI: https://doi.org/10.3390/ijms22115710
Okhale, S.E., Ugbabe, G.E., Oladosu, P.O., Ibrahim, J.A., & Egharevba, H.O. (2018). Chemical constituents and antimicrobial activity of the leaf essential oil of Ixora coccinea L (Rubiaceae) collected from North Central Nigeria. International Journal of Bioassays, pp. 5630-5637. DOI: http://dx.doi.org/10.21746/ijbio.2018.7.1.1 DOI: https://doi.org/10.21746/ijbio.2018.7.1.1
Omotayo, A.I., Dogara, M.M., Sufi, D., Shuaibu, T., Balogun, J., & Dawaki, S. (2022) High pyrethroid-resistance intensity in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West, Nigeria. PLoS Negl Trop Dis 16(6): e0010525. https://doi.org/10.1371/journal.pntd.0010525 DOI: https://doi.org/10.1371/journal.pntd.0010525
Peniche, T., Duarte, J.L., Ferreira, R.M.A., Sidônio, I.A.P., Sarquis, R.S.F.R., Sarquis, Í.R., Oliveira, A.E.M.F.M., Cruz, R.A.S., Ferreira, I.M., & Florentino, A.C. (2022) Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae). Molecules, 27, 8433. https://doi.org/10.3390/molecules27238433 DOI: https://doi.org/10.3390/molecules27238433
Porter, J. E., Kozuchi, G., & Kuck, M. J. (1961). Improved techniques for the laboratory rearing of Aedes aegypti (Linn.). Mosquito News 21:340-342.
Sadanandane, C., Boopathi, P.S.D. & Jambulingam, P. (2012). Efficacy of Three Formulations of Diflubenzuron, an Insect Growth Regulator, Against Culex quinquefasciatus Say, the Vector of Bancroftian Filariasis in India, Indian Journal of Medical Resource 136:783-791
Samy, A.M, Elaagip AH, Kenawy MA, Ayres CF, Peterson AT., & Soliman DE. (2016). Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PloS One,11(10):e0163863. https://doi.org/10.1371/journal.pone.0163863 PMID: 27695107 DOI: https://doi.org/10.1371/journal.pone.0163863