Industrial Applications of Microalgal Biotechnology: A Novel Approach to Disease Mitigation

Authors

  • Odiri Ukolobi Department of Microbiology, Southern Delta University Ozoro, Delta State, Nigeria
  • Vivian Ishioma Chukuka Department of Microbiology, Dennis Osadebay University, Asaba, Nigeria.
  • Ifeanyichukwu Fidelis Onianwah Department of Microbiology, Dennis Osadebay University, Asaba, Nigeria.
  • Morenike Omotayo Adeola Department of Microbiology, Dennis Osadebay University, Asaba, Nigeria.
  • Felix Omamuyovwe Onoriasakpobare Department of Microbiology, Dennis Osadebay University, Asaba, Nigeria.

DOI:

https://doi.org/10.63561/jabs.v2i3.938

Keywords:

Industrial, Application, Microalgal, Biotechnology, Disease, Mitigation

Abstract

A new sustainable method of disease prevention is offered by microalgal biotechnology, which takes advantage of microalgae's special qualities as "cellular factories." A wide range of bioactive substances with medicinal qualities can be produced by cultivating these small photosynthetic organisms. The prevalence of chronic diseases and the emergence of drug-resistant bacteria are two health issues that this industrial application promises to address. The creation of novel antimicrobial agents such as antibiotics, antivirals, and antifungals is one of the main uses. These medicines are desperately needed to fight drug resistance. Additionally, microalgae can be genetically modified to generate monoclonal antibodies and subunit vaccinations, providing a secure and affordable substitute for conventional techniques. They are also a great source of antioxidants and anti-inflammatory substances including polyunsaturated fatty acids (PUFAs) and carotenoids, which are essential for controlling and avoiding chronic illnesses. In addition to direct therapies, microalgal cells can be utilized as sophisticated drug delivery systems, as well as sources of functional foods and nutraceuticals that improve general health. By eliminating contaminants, their function in bioremediation reduces the spread of antibiotic resistance and enhances environmental health. This analysis emphasizes the diverse potential of microalgal biotechnology as a cutting-edge and significant approach to the prevention of disease worldwide.

References

Adeola, M.O., Akinnibosun, F. I., & Odaro, S. I. (2024). A model of staphylococcal food-poisoning scenario mediated by companion dogs colonized by enterotoxin-producing Staphylococcus aureus. Journal of Microbe. https://doi.org/10.1016/j.microbe.2024 5,100-178. DOI: https://doi.org/10.1016/j.microb.2024.100178

Babu, B. (2008). Biomass pyrolysis: a state‐of‐the‐art review. J. B., Bioproducts, and economy, B. I. f. a. s. 2, 393-414. DOI: https://doi.org/10.1002/bbb.92. DOI: https://doi.org/10.1002/bbb.92

Barrow, C.,& Shahidi, F. (2007). "Marine nutraceuticals and functional foods," CRC Press. DOI: https://doi.org/10.1201/9781420015812. DOI: https://doi.org/10.1201/9781420015812

Barsanti L, &Gualtieri P (2006) Algae and men. In: Algae: Anatomy, Biochemistry, and

Biotechnology. Taylor and Francis Group LLC, CRC Press. 251–291.

Barsanti, L.,& Gualtieri, P. (2014). "Algae: anatomy, biochemistry, and biotechnology," CRC press. DOI: https://doi.org/10.1002/9780470995280. ch18. DOI: https://doi.org/10.1002/9780470995280

Becker, W. (2004). 18 microalgae in human and animal nutrition. In "Handbook of microalgal culture: biotechnology and applied phycology", Vol. 312. Wiley Online Library. DOI: https://doi.org/10.1111/j.17454522.1996.tb00073.x. DOI: https://doi.org/10.1002/9780470995280.ch18

Boateng, A. A., Mullen, C. A., Goldberg, N., Hicks, K. B., Jung, H.-J. G., & Lamb, J. F. (2008). Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. 47, 4115-4122. DOI: https://doi.org/10.1007/BF00003544 DOI: https://doi.org/10.1021/ie800096g

Bonjouklian, R., Smitka, T. A., Doolin, L. E., Molloy, R. M., Debono, M., Shaffer, S. A., Moore, R. E., Stewart, J. B., &Patterson, G. M. (1991). Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. J. T. 47, 7739-7750. DOI: https://doi.org/10.1016/S00404020(01)81932-3 DOI: https://doi.org/10.1016/S0040-4020(01)81932-3

Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. J. J. o. A. P. 7, 3-15. DOI: https://doi.org/10.1007/BF00003544

Brennan, L., & Owende, P. (2010). Biofuels from microalgae a review of technologies for production, processing, and extractions of biofuels and co-products. J. R., and reviews, s. e. 14, 557-577. DOI: https://doi.org/10.1016/j.rser.2009.10.00 9. DOI: https://doi.org/10.1016/j.rser.2009.10.009

Brown, M., Jeffrey, S., Volkman, J., & Dunstan, G. (1997). Nutritional properties of

microalgae for mariculture. J. A. 151, 315-331. DOI: https://doi.org/10.1016/S00448486(96)01501-3.

Chisti Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol 2008; 26: 126 131. 71. DOI: https://doi.org/10.1016/j.tibtech.2007.12.002

Chisti Y. (2007). Biodiesel from microalgae. Biotechnol Adv; 25:294 – 306. Roessler P.G. (1990). Environmental control of glycerolipid metabolism in microalgae:commercial implications and future research directions. J Phycol; 26: 393–399. DOI: https://doi.org/10.1111/j.0022-3646.1990.00393.x

Chu, W.-L., See, Y.-C., & Phang, S.-M. (2009). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. J. o. A. P. 21, 641-648. DOI: https://doi.org/10.1007/s10811-0089396-3. DOI: https://doi.org/10.1007/s10811-008-9396-3

Certik, M., & Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. J. o. b., and bioengineering 87, 1-14. DOI: https://doi.org/10.1016/S13891723(99)80001-2. DOI: https://doi.org/10.1016/S1389-1723(99)80001-2

Chauhan, V., Marwah, J., & Bagchi, S. (1992). Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice. J. N. p. 120, 251-257. DOI: https://doi.org/10.1111/j.14698137.1992.tb05661.x. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb05661.x

Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., & Chang, J.-S. (2011). Cultivation, photo

bioreactor design and harvesting of microalgae for biodiesel production: a critical review. J. B. t. 102, 71-81. DOI: https://doi.org/10.1016/j.biortech.2010.0 6.159. DOI: https://doi.org/10.1016/j.biortech.2010.06.159

De-Bashan, L. E., Moreno, M., Hernandez, J.-P., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium I.36, 29412948. DOI: https://doi.org/10.1016/S00431354(01)00522-X. DOI: https://doi.org/10.1016/S0043-1354(01)00522-X

De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. J. B. t. 101, 1611-1627. DOI: https://doi.org/10.1016/j.biortech.2009.0 9.043. DOI: https://doi.org/10.1016/j.biortech.2009.09.043

De Souza Berlinck, R. G. (1995). Some aspects of guanidine secondary metabolites. J. F. d. C. o. N. P. i. t. C. o. O. N. P. 119-295. DOI: https://doi.org/10.1007/978-3-70919363-1_2. DOI: https://doi.org/10.1007/978-3-7091-9363-1_2

Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J-F. (2016). The

environmental biorefinery: using microalgae to remediate wastewater, a winwin paradigm. Energies 9 (132), 1–19. doi:10.3390/en9030132. DOI: https://doi.org/10.3390/en9030132

Fernández, F. G. A., Alı́as, C. B., López, M. a. C. G. a.-M., Sevilla, J. M. F., González, M. a. J.I., Gómez, R. N., & Grima, E. M. (2003). Assessment of the production of 13C labeled compounds from phototrophic microalgae at laboratory scale. J. B. E. 20, 149-162. DOI: https://doi.org/10.1016/S13890344(03)00041-8. DOI: https://doi.org/10.1016/S1389-0344(03)00041-8

Goyal, H., Seal, D., & Saxena, R. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. J. R., and reviews, s. e. 12, 504-517. DOI: https://doi.org/10.1016/j.rser.2006.07.01 4. DOI: https://doi.org/10.1016/j.rser.2006.07.014

Gross, E. M., Wolk, C. P., & Jüttner, F. J. (1991). Fischerellin, a new allelochemical from the freshwater cyanobacterium fischerella muscicola. J. o. P. 1. 27, 686-692. DOI: https://doi.org/10.1111/j.00223646.1991.00686.x. DOI: https://doi.org/10.1111/j.0022-3646.1991.00686.x

Lipton AP (2003) Marine bioactive compounds and their application in mariculture. Marine Ecosystem, Univ. of Kerala, Kariavattom, 2(4): 695-581.

Iwata K, Inayama T.,& Katoh, T (1990) Effect of Spirulina platensis on plasma lipoprotein lipase activity in fructose induced hyperlipidemia in rats. J. Nutr. Sci. Vitaminol. 36:165 171. DOI: https://doi.org/10.3177/jnsv.36.165

Kwak, H. S., Kim, J. Y. H., Woo, H. M., Jin, E. S., Min, B. K., & Sim, S. J. (2016). Synergistic effect of multiple stress for improving microalgal lipid production. Algal Res. 9, 215–224. doi:10.1016/j.algal.2016.09.003. DOI: https://doi.org/10.1016/j.algal.2016.09.003

Leliaert, F., Smith, D. R., Moreau,H., Herron, M. D., Verbruggen, H., Delwiche, C.

F.,. (2012). Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31, 1–46. doi:10.1080/07352689.2011.615705 DOI: https://doi.org/10.1080/07352689.2011.615705

Lee, K., Eisterhol, M. L., Rindi, F., Palanisami, S., & Nam, P. K. (2014). Isolation and screening of microalgae from natural habitats in the Midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Bio. Med. 5 (2), 333–339. doi:10.4103/0976-9668.136178. DOI: https://doi.org/10.4103/0976-9668.136178

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current

status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17, 36. doi:10. 1186/s12934-018-0879-x Kim, H. S., Devarenne, T. P., and Han, A. (2018). Microfluidic systems for microalgal biotechnology: a review. Algal Res. 30, 149–161. doi:10.1016/j. algal.2017.11.020

Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research and development aspects. Renew. Sust. Energ. Rev. 20, 642–656. doi:10.1016/j.rser.2012.12.003 DOI: https://doi.org/10.1016/j.rser.2012.12.003

Hildebrand, M., Abbriano, R. M., Polle, J. E. W., Traller, J. C., Trentacoste, E. M., Smith, S. R., (2013). Metabolic and cellular organization in evolutionarily diversemicroalgaeasrelatedtobiofuelsproduction.Curr.Opin.Chem.Biol.17,506–514. doi:10.1016/j.cbpa.2013.02.027. DOI: https://doi.org/10.1016/j.cbpa.2013.02.027

Malapascua, J. R. F., Jerez, C. G., Sergejevová, M., Figueroa, F. L., & Masojídek, J. (2014). Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat. Biol. 22, 123–140. doi:10.3354/ab00597. DOI: https://doi.org/10.3354/ab00597

Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2006). Screening for

antimicrobial agent production of some freshwater. J. M. 2. DOI: https://doi.org/10.5580/17b8 DOI: https://doi.org/10.5580/17b8

Ismail, M. (2004). Phytoplankton and heavy metal contamination in the marine environment. J.B. i. t. c. e., Kuala Lumpur: University of Malaya Maritime Research Centre 1596.

Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. J. H. o. m. c. b., and phycology, a. 255, 263. DOI: https://doi.org/10.1002/9780470995280.ch11

Laliberte, G., Lessard, P., De La Noüe, J., & Sylvestre, S. J. B. T. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. 59, 227-233. DOI: https://doi.org/10.1016/S09608524(96)00144-7. DOI: https://doi.org/10.1016/S0960-8524(96)00144-7

Lammens, T., Franssen, M., Scott, E., & Sanders, J. (2012). Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. J. B., and Bioenergy 44, 168-181. DOI: https://doi.org/10.1016/j.biombioe.2012. 04.021. DOI: https://doi.org/10.1016/j.biombioe.2012.04.021

Lehmann, J. J. N. (2007). A handful of carbon. 447, 143-144. DOI:https://doi.org/10.1038/447143a . DOI: https://doi.org/10.1038/447143a

Lim, S.-L., Chu, W.-L., & Phang, S.-M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. J. B. t. 101, 7314-7322. DOI: https://doi.org/10.1016/j.biortech.2010.0 4.092. DOI: https://doi.org/10.1016/j.biortech.2010.04.092

Maxwell, E. L., Folger, A. G., & Hogg, S. E. (1985). "Resource evaluation and site selection for microalgae production systems." Solar Energy Research Inst., Golden, CO (USA). DOI: https://doi.org/10.2172/5585709. DOI: https://doi.org/10.2172/5585709

Metting, F. (1996). Biodiversity and application of microalgae. J. J. o. i. m. 17, 477-489. DOI: https://doi.org/10.1007/BF01574779. Moheimani, N. R. (2005). The culture of coccolithophorid algae for carbon dioxide bioremediation, Murdoch University. DOI: https://doi.org/10.1007/BF01574779

Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. J. J. o. a. p 12, 527-534. DOI: https://doi.org/10.1023/A:10081063044 17. DOI: https://doi.org/10.1023/A:1008106304417

Mustafa, E.-M., Phang, S.-M., & Chu, W.L. (2012). Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J. J. o. a. p. 24, 953-963. DOI: https://doi.org/10.1007/s10811-0119716-x. DOI: https://doi.org/10.1007/s10811-011-9716-x

Phang, S., Chui, Y., Kumaran, G., Jeyaratnam, S., & Hashim, M. (2001). High rate algal ponds for treatment of wastewater: a case study for the rubber industry. J. P. M. i. E. B. S.-V., Hong Kong 51-76.

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. J. C. r. i. m. 34, 77-88. DOI: https://doi.org/10.1080/1040841080208 6783. DOI: https://doi.org/10.1080/10408410802086783

Radmer, R. J. (1996). Algal diversity and commercial algal products. BioScience 46 (4), 263–270. doi:10.2307/1312833 DOI: https://doi.org/10.2307/1312833

Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. J. B. t. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. 101, 58-64. DOI: https://doi.org/10.1016/j.biortech.2009.0 2.076. DOI: https://doi.org/10.1016/j.biortech.2009.02.076

Schwartz, R. E., Hirsch, C. F., Sesin, D. F., Flor, J. E., Chartrain, M., Fromtling, R. E., Harris, G. H., Salvatore, M. J., Liesch, J. M., &Yudin, K. J. (1990). Pharmaceuticals from cultured algae. J. o. i. m., and biotechnology 5, 113123. DOI: https://doi.org/10.1007/BF01573860. DOI: https://doi.org/10.1007/BF01573860

Selvarajan, R., Felföldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., & Tekere, M. (2015). Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies 8, 7502–7521. doi:10.3390/en8077502. DOI: https://doi.org/10.3390/en8077502

Sithranga Boopathy, N., & Kathiresan, K. J. J.. (2010). Anticancer drugs from marine flora: an overview. 2010. DOI: https://doi.org/10.1155/2010/214186. DOI: https://doi.org/10.1155/2010/214186

Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. J. J. O. B., & Bioengineering (2006). Commercial applications of microalgae. 101, 87-96. DOI: https://doi.org/10.1263/jbb.101.87. DOI: https://doi.org/10.1263/jbb.101.87

Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., Borowitzka, M. A.,& Hankamer, B. J. N. b. (2010). An economic and technical evaluation of microalgal biofuels. 28, 126-128. DOI: https://doi.org/10.1038/nbt0210-126. DOI: https://doi.org/10.1038/nbt0210-126

Suganya, T., Varman,M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew. Sust. Energ. Rev. 55, 909–941. doi:10.1016/j.rser.2015.11.026’. DOI: https://doi.org/10.1016/j.rser.2015.11.026

Vannini, C., Domingo, G., Marsoni, M., De Mattia, F., Labra, M., Castiglioni, S., & Bracale, M. J. A. (2011). Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. 101, 459465. DOI: https://doi.org/10.1016/j.aquatox.2010.1 0.011 DOI: https://doi.org/10.1016/j.aquatox.2010.10.011

Vu, C. H. T., Lee, H. G., & Chang, Y. K. (2018). Axenic cultures for microalgal biotechnology:establishment, assessment, maintenance, and applications. Biotechnol. Adv. 36 (2), 380–396. doi:10.1016/j.biotechadv.2017.12.018. DOI: https://doi.org/10.1016/j.biotechadv.2017.12.018

Xu H, Miao X., & Wu Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol; 126: 499–507. DOI: https://doi.org/10.1016/j.jbiotec.2006.05.002

Downloads

Published

2025-05-30

How to Cite

Ukolobi, O., Chukuka, V. I., Onianwah, I. F., Adeola, M. O., & Onoriasakpobare, F. O. (2025). Industrial Applications of Microalgal Biotechnology: A Novel Approach to Disease Mitigation. Faculty of Natural and Applied Sciences Journal of Applied Biological Sciences, 2(3), 104–111. https://doi.org/10.63561/jabs.v2i3.938