Productivity of Maize–Cowpea Intercrops as Influenced by Cowpea Varieties and Row Arrangements in the Sudan Savannah of Kano, Nigeria
DOI:
https://doi.org/10.63561/jabs.v2i3.939Keywords:
Cereal-Legume Intercrop, Crop Yield Optimization, Land Productivity, Planting Pattern, Sudano-Sahelian Agro-EcologyAbstract
This field study was conducted during the 2023 rainy season at two sites in Kano State, Nigeria, to evaluate maize–cowpea intercropping performance as influenced by different row arrangements (RA) and cowpea varieties. A split-plot design with three replications was used, assessing four intercropping arrangements (1:1, 1:2, 2:1, and 2:2) and two cowpea varieties (SAMPEA 19 and SAMPEA 21), alongside sole crops. Results indicated that SAMPEA 21 significantly (p < 0.001) enhanced maize vegetative growth, particularly in the 1M:1C arrangement, which produced the tallest plants and highest maize grain yield (2.3 t ha⁻¹) at BUK. In contrast, at Minjibir, the 1:2 arrangement significantly (p < 0.05) reduced maize yield (0.95 t ha⁻¹). Although yield components other than grain yield were not significantly affected (p > 0.05) by variety or row arrangement, intercropping systems generally improved land use efficiency. The 1M:1C arrangement with SAMPEA 21 consistently recorded the highest land equivalent ratio (LER), reaching 1.64 at BUK and 1.58 at Minjibir. The study concludes that a 1M:1C intercropping system using SAMPEA 21 optimizes productivity and resource use in the Sudano-Sahelian agroecological zone and is therefore recommended for adoption by farmers in the region.
References
Adam, A. M., Giller, K. E., Rusinamhodzi, L., Rasche, F., Koomson, E., Marohn, C., & Cadisch, G. (2025). Enhancing the resilience of intercropping systems to changing moisture conditions in Africa through the integration of grain legumes: A meta-analysis. Field Crops Research, 321, Article 109663. https://doi.org/10.1016/j.fcr.2024.109663 DOI: https://doi.org/10.1016/j.fcr.2024.109663
Adebayo, T. A., Musa, M. H., & Salisu, A. (2024). Influence of spatial arrangement on growth and yield of cowpea in maize-based intercropping systems. Journal of Crop Science and Agronomy, 6(1), 45-53. https://doi.org/10.32604/jcsa.2024.028913.
Adebayo, A.K., Anjorin, F.B., Olanipekun, S.O., Aluko, O.A., & Adewumi, A.D. (2024). Performances of Maize Grown as Intercrop with Cowpea under Different Planting Patterns. Journal of Applied Science and Environmental Management, 28(7), 2033-2040. https://dx.doi.org/10.4314/jasem.v28i7.14 DOI: https://doi.org/10.4314/jasem.v28i7.14
Ahmad, A., Bello, N., & Ibrahim, M. (2022). Optimizing spatial arrangements for yield advantage in maize–cowpea intercropping systems under semi-arid conditions. Journal of Agronomic Science, 14(2), 105–115. https://doi.org/10.1016/j.agsci.2022.03.007
Akter Suhi, A., Mia, S.., Khanam, S., Hasan Mithu, M., Uddin, M.K., Muktadir, M.A., Ahmed, S., & Jindo, K. (2022). How Does Maize-Cowpea Intercropping Maximize Land Use and Economic Return? A Field Trial in Bangladesh. Land, 11, 581. https://doi.org/10.3390/ land11040581. DOI: https://doi.org/10.3390/land11040581
Alabi, K.O., Afe, A.I & Adewumi, A.O. (2024). Effects of Maize-Cowpea Intercropping Patterns on Yield and Properties of Typic Plinthustalfs Soil in South Guinea Savanna Zone, Nigeria. Ghana Journal of Science, 65 (1), 1-15. https://dx.doi.org/10.4314/gjs.v65i1.11
Anago, F.N., Agbangba, E.C., Dagbenonbakin, G.D., & Amadji, L.G. (2023). Continuous assessment of cowpea (Vigna unguiculata [L.] Walp.) nutritional status using diagnosis and recommendation integrated system approach. Scientific Report, 13, 14446. https://doi.org/10.1038/s41598-023-40146-0 DOI: https://doi.org/10.1038/s41598-023-40146-0
Asibi, A.E., Dormatey, R., Yirzagla, J., Akologo, L.A., Sugri, I., Quandahor, P., Kusi, F., Zakaria, M., Attamah, P., Asungre, P.A., Salim, L. and Nyour, A.B. (2024) Evaluation of Some Cowpea Genotypes for Maize-Cowpea Intercropping System in the Sudan Savannah Ecology of Ghana. Open Access Library Journal, 11, 1-17. doi: 10.4236/oalib.1111166. DOI: https://doi.org/10.4236/oalib.1111166
Biruk, A., Awoke, T., & Endris, S. (2022). Effect of intercropping of maize and cowpea on the yield of the component crops and land use efficiency at Jinka, Southern Ethiopia. International Journal of Research in Agriculture and Forestry, 9(4), 40–48.
Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., White, P. J. (2015). Improving intercropping: A synthesis of research in agronomy, plant physiology, and ecology. New Phytologist, 206(1), 107–117. https://doi.org/10.1111/nph.13132 DOI: https://doi.org/10.1111/nph.13132
Dimande, P., Arrobas, M., & Rodrigues, M. Â. (2024). Intercropped Maize and Cowpea Increased the Land Equivalent Ratio and Enhanced Crop Access to More Nitrogen and Phosphorus Compared to Cultivation as Sole Crops. Sustainability, 16(4), 1440. https://doi.org/10.3390/su16041440 DOI: https://doi.org/10.3390/su16041440
Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., & Linnemann, A. R. (2019). Sub-Saharan African Maize-Based Foods - Processing Practices, Challenges and Opportunities. Food Reviews International, 35(7), 609-639. https://doi.org/10.1080/87559129.2019.1588290 DOI: https://doi.org/10.1080/87559129.2019.1588290
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B.M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security, 14, 1295–1319. https://doi.org/10.1007/s12571-022-01288-7 DOI: https://doi.org/10.1007/s12571-022-01288-7
Farah, A.J., Adam, A.M., & Farah, A.A. (2024). Assessing the impact of intercropping on maize and cowpea yield in Aynayaskax village, Garowe district, Somalia. European Journal of Theoretical and Applied Sciences, 2(6), 740-746. https://doi.org/10.59324/ejtas.2024.2(6).65. DOI: https://doi.org/10.59324/ejtas.2024.2(6).65
Gardarin, A., Celette, F., Naudin, C. et al. (2022). Intercropping with service crops provides multiple services in temperate arable systems: a review. Agronomy and Sustainable Development, 42, 39. https://doi.org/10.1007/s13593-022-00771-x DOI: https://doi.org/10.1007/s13593-022-00771-x
Idoko J. A., Kalu B. A., & Osang P. O. (2018). Influence of Maize Varieties and Date of Planting Cowpea into Maize/Cowpea Intercropping System in Makurdi, Southern Guinea Savannah, Nigeria. International Journal of Sciences: Basic and Applied Research, 38, 1, 98-113. DOI: https://doi.org/10.9734/ARJA/2018/40425
IAR, seed portal. (2009). https://www.seedportal.org.ng/variety.php?keyword=&category=&varid=227&cropid=7&task=view(03/11/2024).
IAR, seed portal. (2018). https://www.seedportal.org.ng/variety.php?keyword=&category=&varid=612&cropid=3&task=view (03/11/2024).
Joda, M. O., Salami, A. M., & Balogun, A. M. (2021). Performance of cowpea genotypes under intercropping with maize in the rainforest zone of Nigeria. International Journal of Agronomy and Agricultural Research, 18(4), 23–30. https://doi.org/10.21474/IJAAR.2021.184031
Kamai, N., Yusuf, B., & Daniel, E. (2022). Optimizing genotype and row spacing for improved photosynthetic efficiency and yield in cowpea–maize intercropping. African Journal of Plant Science, 16(3), 101–109. https://doi.org/10.5897/AJPS2022.2189
Kanu, S. T., Ibrahim, D. A., & Onuoha, N. R. (2022). Genotype × environment interaction on growth and yield of cowpea under varying agronomic practices. Nigerian Journal of Agriculture and Food Environment, 18(1), 112–120. https://doi.org/10.4314/njafe.v18i1.14
Kussie, B., Tadele, Y., & Asresie, A. (2024). Effect of maize (zea mays l.) and cowpea (vigna unguiculata l.) intercropping on agronomic performance, yield and nutritional values of maize and cowpea under supplementary irrigation. Heliyon, 10(21), e39817. https://doi.org/10.1016/j.heliyon.2024.e39817 DOI: https://doi.org/10.1016/j.heliyon.2024.e39817
Laguardia Nave, R., Corbin, M. Forage (2018). Warm season legume and grasses intercropped with corn as an alternative for corn silage production. Agronomy, 8,199. DOI: https://doi.org/10.3390/agronomy8100199
Maitra, S., Shankar, T., & Banerjee, P. (2020). Potential and Advantages of Maize-Legume Intercropping System. IntechOpen. doi: 10.5772/intechopen.91722 DOI: https://doi.org/10.5772/intechopen.91722
Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S., & Sairam, M. (2021). Intercropping-A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy, 11(2), 343. https://doi.org/10.3390/agronomy11020343 DOI: https://doi.org/10.3390/agronomy11020343
Martin-Guay, M-O., Paquette, A., Dupras, J. & Rivest, D. (2018). The new green revolution: sustainable intensification of agriculture by intercropping, Science Total Environment, 615, 767-772. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.024
Muhammad, A. U. (2023). Genotypic variability and environmental interaction effects on cowpea growth and yield performance in intercrop systems. African Journal of Agricultural Research, 18(4), 234–242. https://doi.org/10.5897/AJAR2023.16288
Mndzebele, B., Ncube, B., Nyathi, M., Kanu, S. A., Fessehazion, M., Mabhaudhi, T., Amoo, S., & Modi, A. T. (2020). Nitrogen Fixation and Nutritional Yield of Cowpea-Amaranth Intercrop. Agronomy, 10(4), 565. https://doi.org/10.3390/agronomy10040565 DOI: https://doi.org/10.3390/agronomy10040565
Moreira, B., Gonçalves, A., Pinto, L., Prieto, M. A., Carocho, M., Caleja, C., & Barros, L. (2024). Intercropping Systems: An Opportunity for Environment Conservation within Nut Production. Agriculture, 14(7), 1149. https://doi.org/10.3390/agriculture14071149 DOI: https://doi.org/10.3390/agriculture14071149
Mudare, S., Kanomanyanga, J., Jiao, X. et al. (2022). Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: A meta-analysis. Agron. Sustain. Dev. 42, 81. https://doi.org/10.1007/s13593-022-00816-1 DOI: https://doi.org/10.1007/s13593-022-00816-1
Nyambose, M. E., Phiri, M. A. R., & Kachere, D. (2021). Improving intercrop efficiency through selection of maize genotypes with upright leaf architecture. Malawi Journal of Agricultural Sciences, 14(2), 67–74. https://doi.org/10.4314/mjas.v14i2.6
Oyewole, B. A., Sulaiman, M. A., & Tijani, R. B. (2021). Effect of row arrangements on yield and resource use efficiency in maize–cowpea intercropping. International Journal of Agronomy, 2021, 1–8. https://doi.org/10.1155/2021/6642973 DOI: https://doi.org/10.1155/2021/6642973
Rahman, N., Larbi, A., Kotu, B., Asante, M.O., Akakpo, D.B., Mellon- Bedi, S., & Hoeschle-Zeledon, I. (2021). Maize- legume strip cropping effects on productivity, income and income risk of farmers in Northern Ghana. Agronomy Journal, 113, 1574-1585. DOI: https://doi.org/10.1002/agj2.20536
Ranum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York academy of sciences, 1312(1), 105-112. DOI: https://doi.org/10.1111/nyas.12396
Rodriquez, C., Carlson, G., Englund, J. E., Flohr, A., Peleer, E., Jeuffroy, M.H., Makowski, D., & Jensen, E.S. (2020). Grain legume-cereal intercropping enhances the use of soil derived and biologically fixed nitrogen in temperate agroecosystem, European Journal of Agronomy,118. DOI: https://doi.org/10.1016/j.eja.2020.126077
Singh, A. K., Singh, J. B., Singh, R., Kantwa, S. R., Jha, P. K., Ahamad, S., ... & Prasad, P. V. (2023). Understanding soil carbon and phosphorus dynamics under grass-legume intercropping in a semi-arid region. Agronomy, 13(7), 1692. https://doi.org/10.3390/agronomy13071692 DOI: https://doi.org/10.3390/agronomy13071692
Swamy, K.R.M. (2023). Origin, domestication, taxonomy, botanical description, genetics and cytogenetics, genetic diversity and breeding of cowpea (Vigna unguiculata L. Walp.). International Journal of Current Research, 15(05), 24711-24746. https://doi.org/10.24941/ijcr.45364.05.2023
Tetteh, A., Kusi, F., Adu-Gyamfi, R. & Attamah, P. (2021) Evaluation of the Suitability of Some Cowpea Genotype for Maize-Cowpea Intercrop in Northern Ghana. American Journal of Plant Sciences, 12, 1817-1834. doi: 10.4236/ajps.2021.1212127. DOI: https://doi.org/10.4236/ajps.2021.1212127
USDA. (2023). World Agricultural Production Circular Series WAP 07-25 July 2023. https://fas.usda.gov/data/production?commodity=almonds& commo dity =corn (03/11/2023).