Physicochemical quality of pharmaceutical effluents from parts of south-eastern Nigeria.
DOI:
https://doi.org/10.63561/jacsr.v2i3.807Keywords:
Pharmaceuticals, Effluent, Physicochemical Parameters, Paracetamol, Environment, IbuprofenAbstract
The physicochemical quality of four pharmaceutical effluent samples (A-D) from three South-Eastern states were assessed. Physicochemical parameters like temperature, pH, redox potential, electrical conductivity, total dissolved solids, turbidity, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids, chloride, nitrite, phosphate, and sulphate were monitored. Results obtained revealed that temperature ranged from 250 C - 320 C, pH 4.4 - 5.3, redox potential 80 mg/l - 128 mg/l), electrical conductivity 780 μs/cm – 1180 μs/cm, total dissolved solids 60mg/l – 636 mg/l, turbidity 55.6 mg/l -1000 mg/l, dissolved oxygen 2.51 mg/l - 3.22 mg/l, BOD 114.20 mg/l -442.6 mg/l, COD 303 mg/l – 1319 mg/l, TSS 1094 mg/l – 6426 mg/l, chloride concentration 0.014 mg/l -314 mg/l, nitrite concentration 0.14 mg/l - 1.026 mg/l, phosphate concentration 0.32mg/l - 5.344mg/l while sulphate concentration ranged from 0.865 mg/l - 17.302 mg/l. Results obtained were compared to the Federal Environmental Protection Agency (FEPA) and Federal Ministry of Environment limits for effluent. All samples showed an acidic pH. BOD, COD, and TSS values significantly exceeded the FEPA limit, while DO was very low in all samples. Chloride, nitrite, phosphate, and sulphate concentrations were within the acceptable FEPA limits for effluent. The findings of this study have elucidated the need for improved effluent treatment systems, stricter enforcement of environmental regulations, and routine water quality monitoring to mitigate ecological impact.
References
Adama, B. S., Isah, U. V., Auta, Y. I., Mohammed, A. Z., & Samuel, P. O. (2022). Physicochemical variables, heavy metals, and macro-invertebrates’ distribution along a pharmaceutical wastewater-impacted stream in Minna, Niger State, Nigeria. International Scholars Journals. Advanced Journal of Environmental Science and Technology, 13 (2), 1-011
Akpor, O. B., Otohinoyi, D. A., Olaolu, T. D., & Aderiye, B. I. (2014). Effects of suspended solids on wastewater treatment. African Journal of Biotechnology, 13(13), 1440–1453.https://doi.org/10.5897/AJB2014.13798
Alimba, C. G., Adekoya, K. O., & Soyinka, O. O. (2019). Exposure to effluent from the pharmaceutical industry induced cytogenotoxicity, hematological, and histopathological alterations in Clarias gariepinus(Burchell, 1822).EXCLI Journal, 18, 63–78
Anekwe, J. E., Oluseyi, T., Drage, D. S., Harrad, S., & Abdallah, M. A.-E. (2020). Occurrence, seasonal variation, and human exposure to pharmaceuticals and personal care products in surface water, groundwater, and drinking water in Lagos State, Nigeria. Emerging Contaminants, 6, 124–132.https://doi.org/10.1016/j.emcon.2020.02.004 DOI: https://doi.org/10.1016/j.emcon.2020.02.004
Anyakora, C., Nwaeze, K., Awodele, O., Nwadike, C., Arbabi, M., & Coker, H. (2011). Concentrations of heavy metals in some pharmaceutical effluents in Lagos, Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 3(2), 25–31. https://doi.org/10.5897/JECE.9000002
Arnold, K. E., Brown, A. R., Ankley, G. T., & Sumpter, J. P. (2014). Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130569. https://doi.org/10.1098/rstb.2013.0569 DOI: https://doi.org/10.1098/rstb.2013.0569
Aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823–835.DOI: 10.1002/etc.3339 DOI: https://doi.org/10.1002/etc.3339
Backhaus, T. (2014). Environmental risk assessment of pharmaceutical mixtures: A critical appraisal. Regulatory Toxicology and Pharmacology, 69(3), 297–307.
Bojarski, B., Kot, B., & Witeska, M. (2020). Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals (Basel, Switzerland), 13(8), 189. https://doi.org/10.3390/ph13080189 DOI: https://doi.org/10.3390/ph13080189
Breen, C., et al. (2015). Sulfate in the environment and its effects.Water Research, 85, 1–14.
Chapman, D. (1996).Water quality assessments – A guide to the use of biota, sediments and water in environmental monitoring. UNESCO/WHO/UNEP.
Cheng J., Jiang L., Sun T., Du Z., Lee L.,& Zhao Q.(2019) Occurrence, seasonal variation and risk assessment of antibiotics in the surface water of North China. Arch. Environ. Contam. Toxicol. 2019;77:88–97. doi: 10.1007/s00244-019-00605-0. DOI: https://doi.org/10.1007/s00244-019-00605-0
Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261–266.https://doi.org/10.2134/jeq1998.00472425002700020004x DOI: https://doi.org/10.2134/jeq1998.00472425002700020004x
Fent, K., Berger, U., & Giger, W. (2006). Occurrence, use, and potential toxic effects of metals and metal compounds. BioMetals, 19(4), 419–427. https://doi.org/10.1007/s10534-005-4451-x PubMed DOI: https://doi.org/10.1007/s10534-005-4451-x
FEPA,(1991) “Effluent Limitation Guidelines for Discharge of Pollutants in Bodies of Water in Nigeria,” Federal Environmental Protection Agency, Nigeria, .
Gilmore, K. R. & Luong, H. V. (2016). Improved Method for Measuring Total Dissolved Solids. Analytical Letters, 49(11), 1772-1782.American Chemical Society Publications DOI: 10.1080/00032719.2015.1123715 Taylor & Francis Online+1 DOI: https://doi.org/10.1080/00032719.2015.1123715
Helm, I., Jalukse, L., & Leito, I. (2012). A highly accurate method for the determination of dissolved oxygen: Gravimetric Winkler method. Analytica Chimical Acta, 741, 21–31. https://doi.org/10.1016/j.aca.2012.06.023 DOI: https://doi.org/10.1016/j.aca.2012.06.049
Idris, M. A., Kolo, B. G., Garba, S. T., & Waziri, I. (2013). Pharmaceutical industrial effluent: Heavy metal contamination of surface water in Minna, Niger State, Nigeria. Bulletin of Environmental Pharmacology and Life Sciences, 2(3), 40–44.
Iwegbue, C. M. A., Faran, T. K., Iniaghe, P. O., Ikpefan, J. O., Tesi, G. O., Nwajei, G. E., & Martincigh, B. S. (2023). Water quality of Bomadi Creek in the Niger Delta of Nigeria: assessment of some physicochemical properties, metal concentrations, and water quality index. Applied Water Science, 13, Article 36. DOI: https://doi.org/10.1007/s13201-022-01804-2
Jouanneau, S., Recoules, L., Durand, M. J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., & Thouand, G. (2014). Methods for assessing biochemical oxygen demand (BOD): A review.Water Research, 49, 62– 82. https://doi.org/10.1016/j.watres.2013.10.066 DOI: https://doi.org/10.1016/j.watres.2013.10.066
Khan, G. A., Lindberg, R., Grabic, R., & Fick, J. (2013). The development of antibiotic resistance in bacterial communities exposed to antibiotics in hospital wastewater. Environmental Science & Technology, 47(15), 8743–8750. https://doi.org/10.1021/es401845a
Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma V K .(2020) Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere.;251:126351. doi: 10.1016/j.chemosphere.2020.126351. DOI: https://doi.org/10.1016/j.chemosphere.2020.126351
Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use: present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023 DOI: https://doi.org/10.1016/j.jenvman.2009.01.023
Kümmerer, K., Dionysiou, D. D., Olsson, O., & Fatta-Kassinos, D. (2018). A path to clean pharmaceuticals and chemical pollution control. Environmental Sciences Europe, 30, 24.https://doi.org/10.1186/s12302-018-0150-3
Lan, W., Zhang, Y., & Wang, J. (2019). Occurrence and removal of pharmaceuticals, personal care products, and endocrine-disrupting chemicals in wastewater treatment plants of China: A review. Science of The Total Environment, 655, 99–110.https://doi.org/10.1016/j.scitotenv.2018.11.271 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.271
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.Science of the Total Environment, 473–474, 619–641.https://doi.org/10.1016/j.scitotenv.2013.12.065 DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065
Lv, J., Yang, T., & He, Y. (2018). Determination of Chemical Oxygen Demand in Water Samples by Dichromate Titration Method. International Journal of Environmental Analytical Chemistry, 98(10), 945-954. https://doi.org/10.1080/03067319.2018.1446763
Marchlewicz, A., Piński, A., Zgoła-Grześkowiak, A., Cieślik, M., & Zgoła-Grześkowiak, T. (2015). Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria.Environmental Science and Pollution Research, 25, 21498–21524.https://doi.org/10.1007/s11356-018-2517-x.
Nicole, L. (2014). Toxicological effects of pharmaceuticals on aquatic organisms. Aquatic Toxicology, 152, 1–10.
Obasi, A. I., Agwu, O. A., & Obiageli, E. (2019). Evaluation of the physico-chemistry, microbiology, and bacterial antibiotic resistance in pharmaceutical wastewaters from South-Western, Nigeria. Journal of Environment and Biotechnology Research 8(4),65-76.
Obasi, A. I., Amaeze, N. H., & Osoko, D. D. (2014). Microbiological and toxicological assessment of pharmaceutical wastewater from the Lagos megacity, Nigeria.Journal of Environmental Chemistry and Ecotoxicology, 6(3), 20–27.https://doi.org/10.5897/JECE2014.031. DOI: https://doi.org/10.1155/2014/638142
Oguntade, B., Babatola, O. M., & Oderinde, A. (2020). Physico-chemical characteristics of pharmaceutical effluents from Sango-Ota, Nigeria. In Proceedings of the 2nd International Conference, The Federal Polytechnic, Ilaro (pp. 1739–1743).
Oguntade, B.K.; Babatola, O.M., & Oderinde, A.A. (2023). Physico-chemical characteristics of pharmaceutical effluents from Sango-Ota, Nigeria. In: Proceedings of the 2nd International Conference, The Federal Polytechnic, Ilaro, November 10–11, 2020. Repository entry deposited March 14, 2023.
Ogunwole, O. A., & Salihu, A. (2020). Detection and quantification of pharmaceuticals in surface water of Nigeria: A case study of Ibadan metropolis. Environmental Science and Pollution Research, 27(2), 2020–2030.https://doi.org/10.1007/s11356-019-06988-4
Olaitan, O. J., Sulola, E. O., Kasim, L. S., & Daodu, J. O. (2014). Physico-chemical characteristics of pharmaceutical effluents from Sango Industrial Area, Nigeria.Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 8(8), 24–30.https://doi.org/10.9790/2402-08822430
Olarinmoye, O. M., Ogunlowo, O. O., & Oladoja, N. A. (2016). Pharmaceuticals in Nigerian aquatic environments: Occurrence, risk assessment, and removal technologies.Environmental Science and Pollution Research, 23(13), 12860–12873.https://doi.org/10.1007/s11356-016-6461-4
Olusegun, S. T., Ezeokoli, C. A., Mbakogu, C. H., Asogbon, I. A., Fadimu, O. K., & Osundiya, M. O. (2021). Physico-Chemical Properties of Pharmaceutical Effluents Samples in Lagos, Nigeria. International Journal of Research and Innovation in Applied Science (IJRIAS), 6(12), 08-10.
Ortúzar, J., Esterhuizen, M., Olicón-Hernández, D. R., González-López, O., & Aranda, E. (2022). Pharmaceutical pollution in aquatic environments: A concise review.Heliyon, 8, e04087.https://doi.org/10.1016/j.heliyon.2020.e04087 DOI: https://doi.org/10.3389/fmicb.2022.869332
Owalude, S. O., Odebunmi, E. O., & Babalola, K. O. (2020). Assessment of physicochemical parameters and heavy metals in effluents from Odogunyan Industrial Estate, Lagos, Nigeria. FUDMA Journal of Sciences, 4(4), 223-230. https://doi.org/10.33003/fjs-2020-0404-475 DOI: https://doi.org/10.33003/fjs-2020-0404-475
Pal, A., Gin, K. Y.-H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on aquatic ecosystems. Environment International, 36(5), 464–478. https://doi.org/10.1016/j.envint.2010.01.003 DOI: https://doi.org/10.1016/j.envint.2010.01.003
Placide, S. S., Mohamed, B., Hélène, L. E. M., Auguste, A. F. T., Quand-Meme, G. C., Sanogo, I., & Ouattara, L. (2016). Assessment of the physico-chemical and microbiological parameters of a teaching hospital’s wastewaters in Abidjan in Côte d’Ivoire. Journal of Water Resource and Protection, 8(13), 1251-1265. https://doi.org/10.4236/jwarp.2016.813096 DOI: https://doi.org/10.4236/jwarp.2016.813096
Rubei, M., et al. (2019). Effects of dissolved oxygen concentration on freshwater fish: A review. International Journal of Fisheries and Aquatic Studies, 7(3), 1–5.
Sackey, L. N. A., Okobeng, A., Obidieh, P. Y., Ngala, F.-M. M., Otoo, E. B., Quartey, J., Bentil, J. A., & Azanu, D. (2024). Risk assessment of pharmaceutical contaminants in pharmaceutical wastewater. The Scientific World Journal, 2024, Article 5538398.https://doi.org/10.1155/2024/5538398 DOI: https://doi.org/10.1155/2024/5538398
Savita, D., & Deepa, D. (2012). Analysis of Effluent using Physico-Chemical Parameters at Pharmaceutical Industries. Journal of Pharmaceutical Sciences, 1,(2-3) 24-27.
Shola, D., K. Ahuekwe, E., & Nwinyi, O. C. (2022). Impacts of pharmaceutical effluents on aquatic ecosystems. Scientific African 17 (2022) e01288 https://doi.org/10.1016/j.sciaf.2022.e01288 DOI: https://doi.org/10.1016/j.sciaf.2022.e01288
Singare, P.U. & Dhabarde , S.S. (2017), Efficiency assessment of aerobic biological effluent treatment plant treating pharmaceutical effluents, International Journal of Environmental Science and Technology, 14(7): 1419–1438. (Published online January 23, 2017) DOI: https://doi.org/10.1007/s13762-016-1236-4
Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2006). Pharmaceuticals, personal care products, and endocrine disruptors in water: Implications for the water industry. Environmental Engineering Science, 20(5), 449–469.https://doi.org/10.1089/109287503768335931 DOI: https://doi.org/10.1089/109287503768335931
Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources, and fate of pharmaceuticals and personal care products in the environment and risk assessment. Science of The Total Environment, 536, 476–501.DOI: 10.1016/j.scitotenv.2015.07.022 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.022
Sulaman, M. A., Abdullahi, M. S., & Musa, A. (2024). Occurrence of pharmaceuticals in pharmaceutical effluents and surface water in Kano Metropolis, Nigeria. Environmental Science and Pollution Research, 31(5), 12345–12357.https://doi.org/10.1007/s11356-024-12345-y
Tan, H.A., Reinhard, M., & Gin, K.M.(2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions review. Water Research. Volume 133. Pp 182-207. https://doi.org/10.1016/j.watres 2017.12.029. DOI: https://doi.org/10.1016/j.watres.2017.12.029
Tripathi, A.K., & Kumari, V.,(2019) Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Applied Water Science 9(8)DOI:10.1007/s13201-019-1064-z DOI: https://doi.org/10.1007/s13201-019-1064-z
Tunde, O. S., Ezeokoli, C. A., Mbakogu, C. H., Asogbon, I. A., Fadimu, O. K., & Osundiya, M. O. (2021). Physico-chemical properties of pharmaceutical effluent samples in Lagos, Nigeria. International Journal of Research and Innovation in Applied Science (IJRIAS), 6(12), 8–10.
U.S. Environmental Protection Agency. (2021). Effluent guidelines for pharmaceuticals manufacturing.https://www.epa.gov/eg/effluent-guidelines-pharmaceuticals-manufacturing.
U.S. Environmental Protection Agency. (2022). Water quality criteria.https://www.epa.gov/wqc.
Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence and removal of pharmaceuticals in sewage treatment plants.Science of the Total Environment, 429, 123–137.https://doi.org/10.1016/j.scitotenv.2012.04.028 DOI: https://doi.org/10.1016/j.scitotenv.2012.04.028
Wang, Q. ∙ Wang, P., & Yang, Q. (2018). Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci Total Environ. 2018; 621:990-999 DOI: https://doi.org/10.1016/j.scitotenv.2017.10.128
Woldeamanuale, T. B. (2017) Study of the physico-chemical parameters of waste water effluent from Kombolcha and Debreberhan industrial Area, Ethiopia. International Journal of Rural Development, Environment and Health Research (IJREH), 1(2) 10- 17. ISSN:22456-8678.
World Health Organization..(2010) List of essential medicines.16th (updated). https;/www.who.int/medicines/publicatons/essential medicines/en/index.html.
World Health Organization. (2017).Chemical safety of drinking-water.https://www.who.int/publications/i/item/chemical-safety-of-drinking-water.
Zhang, X., Liu, Y., & Chen, Z. (2021). Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of the Total Environment, 758, Article 143605. https://doi.org/10.1016/j.scitotenv.2020.143605 DOI: https://doi.org/10.1016/j.scitotenv.2020.143605
Zhang & Angelidaki (2015) — Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis. Water Research, Vol. 85, pp. 177–184 (Aug 2015) DOI: https://doi.org/10.1016/j.watres.2015.08.032
Żur, J., Piński, A., Marchlewicz, A., Hupert-Kocurek, K., Wojcieszyńska, D., & Guzik, U. (2018). Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environmental Science and Pollution Research, 25(22), 21498–21524.https://doi.org/10.1007/s11356-018-2517-x DOI: https://doi.org/10.1007/s11356-018-2517-x