Analysis of Radiative Heat Transfer Changes in the Flow Dynamics of Maxwell and Casson Nanofluids over a Vertically Aligned Plate with Internal Heat Generation
DOI:
https://doi.org/10.63561/japs.v2i3.816Keywords:
Casson fluid, Nanofluid flow, Radiative heat transfer, Skin friction coefficient, Nusselt number, Vertical plate, Heat source effectsAbstract
This study presents a comprehensive numerical investigation of radiative heat transfer and flow dynamics involving Maxwell and Casson nanofluids flowing past a vertically aligned plate, incorporating the effects of internal heat generation. These non-Newtonian fluids exhibiting memory and yield stress behaviors are examined to understand their influence on velocity, temperature, and concentration profiles under coupled thermal and solutal gradients. The governing partial differential equations representing momentum, energy, and mass conservation are transformed into coupled nonlinear ordinary differential equations using similarity variables. These are solved using the fourth-order Runge-Kutta method with a MATLAB-based shooting technique. Key dimensionless parameters such as the Prandtl number, Grashof number, Biot number, heat source parameter, Nusselt number, Sherwood number, and skin friction coefficient are analyzed. The results show that internal heat generation significantly increases fluid temperature and velocity while reducing nanoparticle concentration and thermal transfer efficiency. Furthermore, elevated Biot numbers and thermal radiation broaden the thermal boundary layer, adversely affecting heat transfer. These findings have practical implications for engineering applications such as electronic cooling systems, chemical reactors, biomedical devices, and thermal insulation design. The insights gained enable improved modeling and thermal regulation in systems requiring efficient heat and mass transfer under non-Newtonian fluid behavior and internal heat sources.
References
Anwar, R. K., Misiran, M. I., Khan, M. I., Alharbi, S. O., Thounthong, P., & Nisar, K. S. (2019). Numerical solution of Casson nanofluid flow over a nonlinear inclined surface with Soret and Dufour effects by Keller-box method. Frontiers in Physics. https://doi.org/10.3389/fphy.2019.00139 DOI: https://doi.org/10.3389/fphy.2019.00139
Anwar, T., Kumam, P., & Watthayu, W. (2021). Unsteady MHD natural convection flow of Casson fluid incorporating thermal radiative flux and heat injection/suction mechanism under variable wall conditions. Scientific Reports, 11(1), 4275. https://doi.org/10.1038/s41598-021-83691-2 DOI: https://doi.org/10.1038/s41598-021-83691-2
Arthur, E. M., Seini, I. Y., & Bortteir, L. B. (2015). Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field. Journal of Applied Mathematics and Physics, 3(6). https://doi.org/10.4236/jamp.2015.36085 DOI: https://doi.org/10.4236/jamp.2015.36085
Blair, G. W. S. (1959). An equation for the flow of blood, plasma and serum through glass capillaries. Nature, 183, 613–614. https://doi.org/10.1038/183613a0 DOI: https://doi.org/10.1038/183613a0
Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, San Francisco, 12–17.
Dawar, A., Shah, Z., Islam, S., Idress, M., & Khan, W. (2018). Magnetohydrodynamic CNTs Casson nanofluid and radiative heat transfer in a rotating channel. International Journal of Physics Research and Applications, 1, 017–032. https://doi.org/10.29328/journal.jpra.1001002 DOI: https://doi.org/10.29328/journal.jpra.1001002
Faraz, F., Haider, S., & Imran, S. M. (2019). Study of magnetohydrodynamics impacts on an axisymmetric Casson nanofluid flow and heat transfer over unsteady radially stretching sheet. SN Applied Sciences, 2, 14. https://doi.org/10.1007/s42452-019-1785-5 DOI: https://doi.org/10.1007/s42452-019-1785-5
Gbadeyan, J. A., Titiloye, E. O., & Adeosun, A. T. (2020). Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076 DOI: https://doi.org/10.1016/j.heliyon.2019.e03076
Hayat, T., & Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034 DOI: https://doi.org/10.1016/j.rinp.2017.06.034
Hussain, T., Shehzad, S. A., Alsaedi, A., Hayat, T., & Ramzan, M. (2015). Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model. Journal of Central South University, 22, 1132–1140. https://doi.org/10.1007/s11771-015-2625-4 DOI: https://doi.org/10.1007/s11771-015-2625-4
Khan, H., Ali, F., Khan, N., Khan, I., & Mohamed, A. (2022). Electromagnetic flow of Casson nanofluid over a vertical Riga plate with ramped wall conditions. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.1005447 DOI: https://doi.org/10.3389/fphy.2022.1005447
Kigio, J. K., Mutuku, N. W., & Oke, S. A. (2021). Analysis of volume fraction and convective heat transfer on MHD Casson nanofluid over a vertical plate. Fluid Mechanics, 7(1), 1–8. https://doi.org/10.11648/j.fm.20210701.11 DOI: https://doi.org/10.11648/j.fm.20210701.11
Koriko, O. K., Oreyeni, T., & Oyem, O. A. (2018). On the analysis of variable thermophysical properties of thermophoretic viscoelastic fluid flow past a vertical surface with nth order of chemical reaction. OALib, 5(6), 1–17. https://doi.org/10.4236/oalib.1104271 DOI: https://doi.org/10.4236/oalib.1104271
Meng, G., Chen, G., Tan, Z., & Wang, Z. (2022). Fluid flow and heat transfer of carbon nanotubes- or graphene nanoplatelets-based nanofluids in a channel with micro-cylinders: An experimental study. Heat and Mass Transfer, 58(12), 2221–2234. https://doi.org/10.1007/s00231-022-03225-4 DOI: https://doi.org/10.1007/s00231-022-03236-9
Muthukumar, S., Sureshkumar, S., El-Sapa, S., & Chamkha, A. J. (2022). Impacts of uniform and sinusoidal heating in a nanofluid saturated porous chamber influenced by the thermal radiation and the magnetic field. Numerical Heat Transfer, Part A: Applications, 1–19. https://doi.org/10.1080/10407782.2022.2103139 DOI: https://doi.org/10.1080/10407782.2022.2137072
Mutuku, W. N., & Oyem, A. O. (2021). Casson fluid of a stagnation-point flow (SPF) towards a vertical shrinking/stretching sheet. FUDMA Journal of Sciences, 5(1), 16–26. https://doi.org/10.33003/fjs-2021-0501-xxx DOI: https://doi.org/10.33003/fjs-2021-0501-508
Oke, A. S., Mutuku, W. N., Kimathi, M., & Animasaun, I. L. (2020). Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Engineering, 9(1), 398–411. https://doi.org/10.1515/nleng-2020-0025 DOI: https://doi.org/10.1515/nleng-2020-0025
Okello, J. A., Oyem, A. O., & Mutuku, W. N. (2021). Examination of engine oil-based (MWCNTs-TiO₂, MWCNTs-Al₂O₃, MWCNTs-Cu) hybrid nanofluids for optimal nanolubricant. IOSR Journal of Mathematics, 17(2), 24–38. https://doi.org/10.9790/5728-1702012438
Oyem, O. A. (2015). Effects of thermophysical properties on free convective heat and mass transfer flow over a vertical plate (Unpublished doctoral dissertation). Department of Mathematical Science, Federal University of Technology, Akure, Nigeria.
Pramanik, S. (2014). Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Engineering Journal, 5(1), 205–212. https://doi.org/10.1016/j.asej.2013.05.003 DOI: https://doi.org/10.1016/j.asej.2013.05.003
Qin, Y., Shang, L., Zhou, L., Zhu, J., Yuan, S., Zang, C., Ao, D., & Li, Z. (2022). Application of nanofluids in rapid methane hydrate formation: A review. Energy & Fuels, 36(16), 8995–9013. https://doi.org/10.1021/acs.energyfuels.2c01789 DOI: https://doi.org/10.1021/acs.energyfuels.2c01734
ShanthaSheela, J., Gururaj, A. D. M., Ismail, M., & Dhanasekar, S. (2021). Review on magnetohydrodynamic flow of nanofluids past a vertical plate under the influence of thermal radiation. IOP Conference Series: Earth and Environmental Science, 850, 012037. https://doi.org/10.1088/1755-1315/850/1/012037 DOI: https://doi.org/10.1088/1755-1315/850/1/012037
Sivashanmugam. (2012). Application of nanofluids in heat transfer. Open Science. https://doi.org/10.5772/52496 DOI: https://doi.org/10.5772/52496
Swarnalathamma, B. V. (2018). Heat and mass transfer on MHD flow of nanofluid with thermal slip effects. International Journal of Applied Engineering Research, 13(18), 13705–13726.
Ullah, I., Khan, I., & Shafie, S. (2016). MHD natural convection flow of Casson nanofluid over nonlinearly stretching sheet through porous medium with chemical reaction and thermal radiation. Nanoscale Research Letters, 11, 527. https://doi.org/10.1186/s11671-016-1745-6 DOI: https://doi.org/10.1186/s11671-016-1745-6
Vijayaragavan, R., & Kavitha, M. A. (2017). Chemical reacting radiative Casson fluid flow over a vertical plate in the presence of heat source/sink and aligned magnetic field. Chemical Process Engineering Research, 49, 14–31.