On Galois Groups, Resolvents And Applications

Main Article Content

Uzowulu Giovanni Nwachukwu
Rafiat Bada Abubakar

Abstract

This paper examined Galois groups of polynomials with resolvents. Galois theory addresses the solvability of polynomial equations by radicals, specifically to determine when the polynomial can be solved using a sequence of operations and roots extractions for higher degree polynomials. This paper investigated polynomials roots, inherent difficulties and complexities associated with computing Galois groups of polynomials with a zero in on the incorporation of resolvents with specific emphasis to polynomials of order 3, 4, 5 and 6 . Applications are also presented.

Article Details

How to Cite
Nwachukwu, U. . G., & Abubakar, R. . B. (2025). On Galois Groups, Resolvents And Applications. Faculty of Natural and Applied Sciences Journal of Scientific Innovations , 6(4), 127–138. https://doi.org/10.63561/fnas-jsi.v6i4.975
Section
Articles

References

Alizadeh, F. (2012). An introduction to formally real Jordan algebras and their applications in optimization. Handbook on Semidefinite, Conic and Polynomial Optimization, 297-337.

Allgower, E. L., & Georg, K. (2003). Numerical continuation methods: An introduction (Vol. 13). Springer. https://doi.org/10.1007/978-3-642-61257-2all

Awtrey, C. T., Cesarski, & Jakes, P., (2017), Determining Galois group of reducible polynomials via discriminants and linear resolvents. Journal of algebra number theory and application, 39(5): 685 – 702.

Bartel, A., & de Smit, B. (2013). Index formulae for integral Galois modules. Journal of the London Mathematical Society, 88(3), 845-859.

Bewersdorff, J. (2006). Galois theory for beginners: A historical perspective. American Mathematical Society.

Bright, C. (2013). Computing the Galois group of polynomial https://cs.uwaterloo.ca.co

Brzezinski, J. (2011). Galois Groups and Number Theory. Nordisk Matematisk tidskrift Normat. 59. 144 – 177.

Colin, A. (2021). Formal computation of Galois groups using relative resolvents. In G. Cohen, M. Giusti, & T. Mora (Eds.), Applied algebra, algebraic algorithms and error-correcting codes: AAECC 1995. https://doi.org/10.1007/3-540-60114-7_1

Conrad, K. (2020). Applications of Galois theory. https :/kconrad.maths.uconn.edu

Efrat, I. (2023). The kernel generating condition and absolute Galois groups. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-023-2420-8butu

Geissler, K., & Klüners, J. (2000). Galois Group Computation for Rational Polynomials. Journal of Symbolic Computation, 30(6), 653-674. https://doi.org/10.1006/jsco.2000.0377

Kret, A., & Shin, S. W. (2023). Galois representations for general symplectic groups. Journal of the European Mathematical Society, 25(1), 75–152. https://doi.org/10.4171/JEMS/1179

Laszlo,Y. (2024). Introduction to Galois theory.Springer

Leistar, T. (2023). Galois Theory. Lecture notes University of Edinburgh

Mertens,M. H. (2021). Galois theory Lecture notes.https://www.maths.rwth-aachen.de/-michael.mertens

Obi, M.C. (2017), Computing Galois groups with Resolvents, Castor Journal of Mathematical Sciences. 11 (1), 15 – 21.

Orlitzky, M. (2022). Rank computation in Euclidean Jordan algebras. Journal of Symbolic Computation, 113, 181-192.

Ramond, P. (2020). Abel-Ruffini’s theorem:Complex but not complicated.arXiv:2011.05162v1[Maths.HO]

Stewart, I. (2009). Solvability of Polynomial Equations by Radicals. In Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38871-2_2

Vakil, R. (2006). Absolute Galois acts faithfully on the components of the moduli space of surfaces: A Belyi-type theorem in higher dimension. arXiv.

Valibuize, A. (2020). Computation of the Galois groups of the resolvent factors for the direct and inverse Galois problems. Journal of Algebraic Algorithms and Applications, 15(3), 421-438. https://doi.org/10.1016/j.jalga.2020.03.004

Weintraub, S. H. (2000). Galois theory. Springer