Nonlinear Dynamics and Sensitivity of R₀ to Epidemiological Parameters in a Structured Disease Model

Main Article Content

Peters Nwagor
Joyce Adaobi Okoro
Precious Yomi Igwe

Abstract

The understanding the role of asymptomatic carriers in disease transmission is critical for effective epidemic control. This study presents a compartmental SEIR-type model that explicitly incorporates carrier transmission through a dedicated exposed compartment and transmission coefficient β1. Using the Next Generation Matrix approach, the study derive an analytical expression for the basic reproduction number R0, evaluating its sensitivity to β1 and other key parameters. A parametric analysis was conducted by varying β1 while holding other parameters constant. The results reveal a nearly linear positive relationship between β1 and R0, confirmed through both linear and nonlinear regression models. The nonlinear model provided a slightly better fit, but the linear model remains interpretable and robust across the range of values analyzed. Sensitivity analysis further demonstrated that R0 is highly responsive to changes in carrier transmission compared to other parameters such as recovery rate (γ) and symptomatic transmission (β2). The findings in this study underscores the critical role of asymptomatic individuals in sustaining outbreaks and highlights the need for public health interventions which focused on early detection and isolation of carriers. This study contributes a mathematically grounded framework for evaluating carrier-driven transmission dynamics and provides actionable insights for epidemic modeling and control strategies.

Article Details

How to Cite
Nwagor, P., Okoro, J. A., & Igwe, P. Y. (2025). Nonlinear Dynamics and Sensitivity of R₀ to Epidemiological Parameters in a Structured Disease Model. Faculty of Natural and Applied Sciences Journal of Mathematical and Statistical Computing, 2(3), 51–62. https://doi.org/10.63561/jmsc.v2i3.857
Section
Articles

References

Abdulrahman, G. A. (2013). Sensitivity analysis of the parameters of a mathematical model of Hepatitis B virus transmission. Universal Journal of Applied Mathematics, 1(32), 230-241. DOI: https://doi.org/10.13189/ujam.2013.010405

Ahrned, B. E., Obeng-Denteh, W., Barnes, B. & Ntherful, G. E. (2014). Vaccination dynamics of chickenpox in Agona West Municipality of Ghana. British Journal of Mathematics and Computer Science, 4(14), 2036-2045. DOI: https://doi.org/10.9734/BJMCS/2014/7883

Anderson, R. M. & May, R. M, (199l). Infectious diseases of humans: dynamics and control. Oxford University Press.

Anderson, R. M. (1991). The kermack mckendrick Epidemic threshold theorem. Bulletin of mathematical biology, 53(1), 34-56. DOI: https://doi.org/10.1016/S0092-8240(05)80039-4

Andrews, I. R. & S. Basu, S. (2011). Transmission dynamics and control of cholera in Haiti: An epidemic model. Lancet, 377(3), 1248 - 1255. DOI: https://doi.org/10.1016/S0140-6736(11)60273-0

Bertuzzo, E., Man, L., Righetto, L., Gatto, M., Casagrandi, R., Blokesch, M., Rodriguez Iturbe, I. & Rinaldo, A. (2011). Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophysical Research Letters, 38(1), 64 - 83. DOI: https://doi.org/10.1029/2011GL046823

Chaos, T. I. (2006). Global stability of an SEIR epidemic model with contact immigration. Chaos, Solitons and Fractals, 30(4), 1012-1045 DOI: https://doi.org/10.1016/j.chaos.2005.09.024

Dontwi, I. K., Obeng - Denteh, W., Andam, E. A. &Obiri-Apraku, L. (2014). Modeling hepatitis B in A high prevalence district in Ghana. British Journal of Mathematics and Computer Science, 4(7), 969-988. DOI: https://doi.org/10.9734/BJMCS/2014/4682

Dontwi, I. K., Obeng - Denteh, W., Andarn, E. A. & Obiri-Apraku, L. A. (2014). Mathematical model to predict the prevalence and transmission dynamics of tuberculosis in Amansie West District, Ghana. British Journal of Mathematics and Computer Science, 4(3), 402-425. DOI: https://doi.org/10.9734/BJMCS/2014/4681

Faruquç, S. M., Albert, M. J. & Mekalanos, J. J. (1998). Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev., 62(4), 1301 – 1314. DOI: https://doi.org/10.1128/MMBR.62.4.1301-1314.1998

Ghosh, C.J. (2004). Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput. 152(4), 385–402. DOI: https://doi.org/10.1016/S0096-3003(03)00564-2

Goldstein, S. F. (2005). A mathematical model to estimate global hepatits B disease burden and vaccination impact, Int. J. Epidemiol. 34(2), 1329–1339. DOI: https://doi.org/10.1093/ije/dyi206

Greenhalgh, I. M. (2003). SIRS epidemic model and simulations using different types of seasonal contact rate. Systems analysis modelling simulation, 43(2), 573-600. DOI: https://doi.org/10.1080/023929021000008813

Guo, J. L. (2006). Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng. 3 513–525. DOI: https://doi.org/10.3934/mbe.2006.3.513

Gyasi Agyei, K. A., Obeng-Denteh, W. & Gyasi-Agyei, A. (2013). Analysis and model in of prevalence of measles in the Ashanti Region of Ghana. British Journal of Mathematics and Computer Science. 3(2), 209-225. DOI: https://doi.org/10.9734/BJMCS/2013/2182

Hyman & Li (2006) Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3(1) 89–100. DOI: https://doi.org/10.3934/mbe.2006.3.89

Kapur, J. N. (1990). Mathematical models in biology and medicine. Affiliated East-West Press. 36(2), 91-115.

Kimbir, P. B. (2014). Simulation of a mathematical model of Hepatitis B Virus transmission dynamics in the presence of vaccination and treatment. Mathematical theory and modeling, 4(1), 44-59.

Li & Fang (2009). Stability of an age-structured SEIR epidemic model with infectivity in latent period. Applications and Applied Mathematics: An International Journal (AAM), 4(1), 218-236.

Li & Jin (2005). Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos, Solitons and Fractals, 25, (3) 1177-1184. DOI: https://doi.org/10.1016/j.chaos.2004.11.062

Li & Jin (2005). Global stability of an SEI epidemic model with general contact rate. Chaos, Solitons and Fractals, 23(2), 997-1004. DOI: https://doi.org/10.1016/j.chaos.2004.06.012

Moneim, M.R. (2009) Stochastic and monte carlo simulation for the spread of the Hepatitis B. Australian Journal of Basic and Applied Sciences, 3(1), 1607-1615.

Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D. L. &Morris, J. G. (2011). Estimating the reproductive numbers for the 2008 - 2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences, 108(3), 8767 - 8772. DOI: https://doi.org/10.1073/pnas.1019712108

Nwagor, P. & Ekaka-a, E. N (2017) Deterministic sensitivity of a mathematical modeling of HIV infection with fractional order characterization. International Journal of pure and applied science 10 (1), 84-90

Nwagor, P. & Lawson-Jack I (2020) Stability Analysis of the Numerical Approximation for HIV-Infection of Cd4+ T-Cells Mathematical Model. International Journal of Research and Innovation in Applied Science (IJRIAS) Volume V, Issue II,

Nwagor, P. (2020) Database Prediction of Co-existence and the Depletion of the Viral Load of the Virions of HIV Infection of CD4+ T-cells. International Journal of Applied Science and Mathematics 7 (1), 11-19

Ochoche, J. M. (2013). A mathematical model for the transmission dynamics of cholera with control strategy. International Journal of Science and Technology, 11(2), 45-49.

Ogbuagu E. M, Jackreece P. C. and Nzerem F (2023) Stability Analysis of Mathematical Model of Hepatitis B Dynamics with Vaccination, Treatment and Post-Exposure Prophylaxis International Journal of Research Publication and Reviews, 4 (8)2124-2133 DOI: https://doi.org/10.55248/gengpi.4.823.51059

Okeke, I.S., Nwagor, P., Yakubu, H. & Ozioma, O. (2019) Modelling HIV Infection of CD4+ T Cells Using Fractional Order Derivatives. Asian Journal of Mathematics and Applications. Article ID ama0519. 1-6. http:scienceasia.asia

Saher, E. R. (2012). Investigation of an inflammatory viral disease HBV in cardiac patients through polymerase chain reaction. Advances in Bioscience and Biotechnology, 4(1), 417-422. DOI: https://doi.org/10.4236/abb.2012.324059

Tuite, A. R., Tien, J., Eisenberg, M., Earn, D. J., Ma, J. & Fisman, D. N. (2011). Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions. Annals of Internal Medicine, 154(9), 593 – 601. DOI: https://doi.org/10.7326/0003-4819-154-9-201105030-00334

Wang, J. & Modnak, C. (2011). Modeling cholera dynamics with controls. Canadian Applied Mathematics Quarterly. 34(3), 109 -121.

Wiah, et al (2011). Using mathematical model to depict the immune response to hepatitis B virus infection. Journal of Mathematics Research, 3(1), 157-116. DOI: https://doi.org/10.5539/jmr.v3n2p157

Zhuo, I. E. (2011). Global analysis o f a general HBV Infection Model. IEEE International Conference on Systems Biology (ISB), Zhuhai, 2-4

Zou, G. R. (2010). Modeling the transmission dynamics and control of hepatitis B Virus in China. Journal of Theoretical Biology, 2(1), 45 -67. DOI: https://doi.org/10.1016/j.jtbi.2009.09.035