Nonlinear Dynamics and Sensitivity of R₀ to Epidemiological Parameters in a Structured Disease Model
Main Article Content
Abstract
The understanding the role of asymptomatic carriers in disease transmission is critical for effective epidemic control. This study presents a compartmental SEIR-type model that explicitly incorporates carrier transmission through a dedicated exposed compartment and transmission coefficient β1. Using the Next Generation Matrix approach, the study derive an analytical expression for the basic reproduction number R0, evaluating its sensitivity to β1 and other key parameters. A parametric analysis was conducted by varying β1 while holding other parameters constant. The results reveal a nearly linear positive relationship between β1 and R0, confirmed through both linear and nonlinear regression models. The nonlinear model provided a slightly better fit, but the linear model remains interpretable and robust across the range of values analyzed. Sensitivity analysis further demonstrated that R0 is highly responsive to changes in carrier transmission compared to other parameters such as recovery rate (γ) and symptomatic transmission (β2). The findings in this study underscores the critical role of asymptomatic individuals in sustaining outbreaks and highlights the need for public health interventions which focused on early detection and isolation of carriers. This study contributes a mathematically grounded framework for evaluating carrier-driven transmission dynamics and provides actionable insights for epidemic modeling and control strategies.
Article Details
References
Abdulrahman, G. A. (2013). Sensitivity analysis of the parameters of a mathematical model of Hepatitis B virus transmission. Universal Journal of Applied Mathematics, 1(32), 230-241. DOI: https://doi.org/10.13189/ujam.2013.010405
Ahrned, B. E., Obeng-Denteh, W., Barnes, B. & Ntherful, G. E. (2014). Vaccination dynamics of chickenpox in Agona West Municipality of Ghana. British Journal of Mathematics and Computer Science, 4(14), 2036-2045. DOI: https://doi.org/10.9734/BJMCS/2014/7883
Anderson, R. M. & May, R. M, (199l). Infectious diseases of humans: dynamics and control. Oxford University Press.
Anderson, R. M. (1991). The kermack mckendrick Epidemic threshold theorem. Bulletin of mathematical biology, 53(1), 34-56. DOI: https://doi.org/10.1016/S0092-8240(05)80039-4
Andrews, I. R. & S. Basu, S. (2011). Transmission dynamics and control of cholera in Haiti: An epidemic model. Lancet, 377(3), 1248 - 1255. DOI: https://doi.org/10.1016/S0140-6736(11)60273-0
Bertuzzo, E., Man, L., Righetto, L., Gatto, M., Casagrandi, R., Blokesch, M., Rodriguez Iturbe, I. & Rinaldo, A. (2011). Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophysical Research Letters, 38(1), 64 - 83. DOI: https://doi.org/10.1029/2011GL046823
Chaos, T. I. (2006). Global stability of an SEIR epidemic model with contact immigration. Chaos, Solitons and Fractals, 30(4), 1012-1045 DOI: https://doi.org/10.1016/j.chaos.2005.09.024
Dontwi, I. K., Obeng - Denteh, W., Andam, E. A. &Obiri-Apraku, L. (2014). Modeling hepatitis B in A high prevalence district in Ghana. British Journal of Mathematics and Computer Science, 4(7), 969-988. DOI: https://doi.org/10.9734/BJMCS/2014/4682
Dontwi, I. K., Obeng - Denteh, W., Andarn, E. A. & Obiri-Apraku, L. A. (2014). Mathematical model to predict the prevalence and transmission dynamics of tuberculosis in Amansie West District, Ghana. British Journal of Mathematics and Computer Science, 4(3), 402-425. DOI: https://doi.org/10.9734/BJMCS/2014/4681
Faruquç, S. M., Albert, M. J. & Mekalanos, J. J. (1998). Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev., 62(4), 1301 – 1314. DOI: https://doi.org/10.1128/MMBR.62.4.1301-1314.1998
Ghosh, C.J. (2004). Modelling the spread of carrier-dependent infectious diseases with environmental effect, Appl. Math. Comput. 152(4), 385–402. DOI: https://doi.org/10.1016/S0096-3003(03)00564-2
Goldstein, S. F. (2005). A mathematical model to estimate global hepatits B disease burden and vaccination impact, Int. J. Epidemiol. 34(2), 1329–1339. DOI: https://doi.org/10.1093/ije/dyi206
Greenhalgh, I. M. (2003). SIRS epidemic model and simulations using different types of seasonal contact rate. Systems analysis modelling simulation, 43(2), 573-600. DOI: https://doi.org/10.1080/023929021000008813
Guo, J. L. (2006). Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng. 3 513–525. DOI: https://doi.org/10.3934/mbe.2006.3.513
Gyasi Agyei, K. A., Obeng-Denteh, W. & Gyasi-Agyei, A. (2013). Analysis and model in of prevalence of measles in the Ashanti Region of Ghana. British Journal of Mathematics and Computer Science. 3(2), 209-225. DOI: https://doi.org/10.9734/BJMCS/2013/2182
Hyman & Li (2006) Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3(1) 89–100. DOI: https://doi.org/10.3934/mbe.2006.3.89
Kapur, J. N. (1990). Mathematical models in biology and medicine. Affiliated East-West Press. 36(2), 91-115.
Kimbir, P. B. (2014). Simulation of a mathematical model of Hepatitis B Virus transmission dynamics in the presence of vaccination and treatment. Mathematical theory and modeling, 4(1), 44-59.
Li & Fang (2009). Stability of an age-structured SEIR epidemic model with infectivity in latent period. Applications and Applied Mathematics: An International Journal (AAM), 4(1), 218-236.
Li & Jin (2005). Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos, Solitons and Fractals, 25, (3) 1177-1184. DOI: https://doi.org/10.1016/j.chaos.2004.11.062
Li & Jin (2005). Global stability of an SEI epidemic model with general contact rate. Chaos, Solitons and Fractals, 23(2), 997-1004. DOI: https://doi.org/10.1016/j.chaos.2004.06.012
Moneim, M.R. (2009) Stochastic and monte carlo simulation for the spread of the Hepatitis B. Australian Journal of Basic and Applied Sciences, 3(1), 1607-1615.
Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D. L. &Morris, J. G. (2011). Estimating the reproductive numbers for the 2008 - 2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences, 108(3), 8767 - 8772. DOI: https://doi.org/10.1073/pnas.1019712108
Nwagor, P. & Ekaka-a, E. N (2017) Deterministic sensitivity of a mathematical modeling of HIV infection with fractional order characterization. International Journal of pure and applied science 10 (1), 84-90
Nwagor, P. & Lawson-Jack I (2020) Stability Analysis of the Numerical Approximation for HIV-Infection of Cd4+ T-Cells Mathematical Model. International Journal of Research and Innovation in Applied Science (IJRIAS) Volume V, Issue II,
Nwagor, P. (2020) Database Prediction of Co-existence and the Depletion of the Viral Load of the Virions of HIV Infection of CD4+ T-cells. International Journal of Applied Science and Mathematics 7 (1), 11-19
Ochoche, J. M. (2013). A mathematical model for the transmission dynamics of cholera with control strategy. International Journal of Science and Technology, 11(2), 45-49.
Ogbuagu E. M, Jackreece P. C. and Nzerem F (2023) Stability Analysis of Mathematical Model of Hepatitis B Dynamics with Vaccination, Treatment and Post-Exposure Prophylaxis International Journal of Research Publication and Reviews, 4 (8)2124-2133 DOI: https://doi.org/10.55248/gengpi.4.823.51059
Okeke, I.S., Nwagor, P., Yakubu, H. & Ozioma, O. (2019) Modelling HIV Infection of CD4+ T Cells Using Fractional Order Derivatives. Asian Journal of Mathematics and Applications. Article ID ama0519. 1-6. http:scienceasia.asia
Saher, E. R. (2012). Investigation of an inflammatory viral disease HBV in cardiac patients through polymerase chain reaction. Advances in Bioscience and Biotechnology, 4(1), 417-422. DOI: https://doi.org/10.4236/abb.2012.324059
Tuite, A. R., Tien, J., Eisenberg, M., Earn, D. J., Ma, J. & Fisman, D. N. (2011). Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions. Annals of Internal Medicine, 154(9), 593 – 601. DOI: https://doi.org/10.7326/0003-4819-154-9-201105030-00334
Wang, J. & Modnak, C. (2011). Modeling cholera dynamics with controls. Canadian Applied Mathematics Quarterly. 34(3), 109 -121.
Wiah, et al (2011). Using mathematical model to depict the immune response to hepatitis B virus infection. Journal of Mathematics Research, 3(1), 157-116. DOI: https://doi.org/10.5539/jmr.v3n2p157
Zhuo, I. E. (2011). Global analysis o f a general HBV Infection Model. IEEE International Conference on Systems Biology (ISB), Zhuhai, 2-4
Zou, G. R. (2010). Modeling the transmission dynamics and control of hepatitis B Virus in China. Journal of Theoretical Biology, 2(1), 45 -67. DOI: https://doi.org/10.1016/j.jtbi.2009.09.035